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Introduction

The SOCAR R&D Journal is a collection of Academic works that were published in 
the years 2021-2023 by the R&D researchers. Committed to its 51-year research, 
remarkable development and constant innovation, SOCAR R&D and Innovation 
Company in line with SOCAR Global and SOCAR Türkiye aim to create an 
integrated energy business that adds value to all stakeholders in an economically 
and socially responsible way. SOCAR Türkiye R&D fields of expertise include 
catalyst research, green chemistry, sustainable, clean, and efficient energy, 
value-added products, energy transition, digitalization, and environmental 
solutions. Adoption of an open innovation model allows the SOCAR R&D to 
engage in strong industry-academia collaborations and work with more than 
30 national and international universities. SOCAR R&D currently holds 9 patents 
and 18 applications for national and EU patent.

Regarding SOCAR R&D ongoing Project activities, the SOCAR R&D Journal consists 
of a total of 8 articles classified into 3 groups as Process Digitalization (6 articles), 
Sustainability & Catalyst (1 article), and Product & Biotechnology (1 article). These 
articles have been published in high-impact factor journals, such as Computers 
& Chemical Engineering Journal, Computer Aided Chemical Engineering, 
Processes, Polymers and Archives of Microbiology. Most of these articles have 
been presented at different national and international conferences such as the 
31st European Symposium on Computer Aided Process Engineering (Istanbul, 
Türkiye), European Symposium on Computer-Aided Process Engineering-32 
(Toulouse, France), the 9th International Conference on the Foundations of 
Systems Biology in Engineering (Boston, USA), etc. The research articles have 
been written in academic collaboration with professors at METU, Boğaziçi, Ege, 
and other national universities. 
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Abstract
Optimum selection of input variables, number of hidden neurons and connections among 
the network elements deliver the best configuration of an ANN, usually resulting in reduced 
over-fitting and improved test performance. This study focuses on the development of a 
superstructure-oriented feedforward ANN design and training algorithm whose impacts are 
demonstrated on an industrial Ethylene Oxide (EO) plant for the prediction of product related 
variables. Proposed method brings about a mixed integer nonlinear programming problem 
(MINLP) to be solved, which takes the existence of inputs, neurons, and connections among 
the network elements into account by binary variables in addition to continuous weights of 
existing connections. Our investigations show that almost 85% of the ANN connections are 
removed compared to the fully connected ANN (FC-ANN) with 50% decrease in the number of 
inputs of the ANN. The modified ANN delivers a better prediction performance over FC-ANN, 
since FC-ANN suffers from over-fitting.

Keywords: machine learning; artificial neural networks; superstructure optimization; process 
modelling; mixed integer nonlinear programming.

Introduction

Artificial Neural Network (ANN) is a sophisticated integration of high number 
of relatively simple mathematical expressions (activation functions) and 
input variables to deliver an output prediction based on network parameters 
and architecture. ANNs involve significant number of connections, further 
characterized by parameters, among network elements having the capability 

mailto:hasansildir@gtu.edu.tr
https://www.sciencedirect.com/science/article/abs/pii/S0098135422001880
https://doi.org/10.1016/j.compchemeng.2022.107850
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to represent a broad range of data. Various types of ANNs have been developed 
(Gupta and Raza, 2019) after the foundations were laid earlier (McCulloch 
and Pitts, 1943). Feedforward ANNs propagate the information in the network 
only in the forward direction through the output. The parameters which are 
required for the information propagation, in addition to network architecture, 
are obtained using historical measurements; thus, the method is exposed to 
typical weaknesses of data driven empirical models.

Implementations of ANNs cover a wide spectrum of research areas. Okuyucu 
et al (Okuyucu et al., 2007) used ANNs to calculate the correlations between the 
friction stir welding parameters of aluminum and its mechanical properties. 
In (Kalyan et al., 2014), ultrasound images of liver are considered and disease 
conditions were calculated using a classification objective function. ANNs found 
potential also in pharmaceutical industry (Agatonovic-Kustrin and Beresford, 
2000). Hossain used twelve air related inputs to calculate the dispersion of the 
pollutants over different regions of urban conditions (Hossain, 2014). A detailed 
review on the implications for process systems engineering, in particular, is 
provided in (Lee et al., 2018). A more focused approach on chemical engineering 
can be found in (Venkatasubramanian, 2019). A comprehensive survey of ANNs 
applications in a wider vision are given in (Abiodun et al., 2018).

The standard application of ANNs includes mostly fully connected networks, 
where all inputs, neurons and outputs are entirely connected. Fully connected 
ANN architectures (FC-ANNs) usually comprise high number of parameters. 
Typically, as the dimensions get larger, higher number of connections and 
parameters are introduced. As a result, it is usually expected that the increase 
in the number of parameters provides higher capability of fitting to the training 
data. Nevertheless, it is worthwhile here to state that this may easily result in 
overfitting, and therefore poor prediction capability of the ANN. Training of 
ANNs is a challenging task due to nonconvexity issues, leading to suboptimal 
and different solutions based on the initial guess of nonlinear optimization 
problem (NLP) solved for training (Schweidtmann and Mitsos, 2019). In 
addition, significant theoretical advancements are needed to ensure global 
optimality (Haeffele and Vidal, 2017). Such problems arise more often once the 
overall architecture gets larger, in general. On the other hand, for the training 
in a traditional sense, the architecture must be prespecified, leaving only the 
continuous parameters as decision variables.

The hyper-parameter related issues including the selection of inputs, the 
determination of the number of hidden layer neurons and the connectivity 
within the network are crucial as they have significant impact on the overfitting 
problem, in addition to computational and practical issues. Such parameters 
are also exposed to identification issues with statistically or spatially limited 
measurements (Levasseur et al., 2017). Introducing more data is usually 
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not a satisfactory effort as new data might not carry additional statistical 
information unless they are collected from a different location, which might be 
challenging task especially for industrial plants.

There are Bayesian optimization-based methods available in the literature 
for ANN hyper-parameter optimization problem, in particular for the feature 
selection. Yet, such derivative-free methods might result in different local 
solutions and the global solution cannot be assured. Moreover, Bayesian 
optimization is currently non-parallelizable. On the other hand, efficient 
decomposition algorithms are present for larger search spaces, integrating 
the derivate-based and blackbox optimization approaches for the solution of 
MINLPs (Diaz et al., 2017; Feurer and Hutter, 2019; Stamoulis et al., 2018).

Another typical solution to overfitting reduction problem is to include a 
regularization term to penalize larger values of ANN parameters during the 
NLP solution, which unfortunately cannot regularize the hyper parameters 
(Manngård et al., 2018). Dropout regularization is an alternative and efficient 
method to include structure detection element into ANNs, using random 
sampling based techniques (Poernomo and Kang, 2018).

Similarly, pruning is another method to reduce the number of connections in 
ANNs (Xie et al., 2019; Zhou et al., 2019). It is a method to reduce the number 
of connections in ANNs (Akyol, 2020; He et al., 2019; Sietsma and Dow, 1988; 
Xie et al., 2019). Kavzoglu and Mather (Kavzoglu and Mather, 1999) compared 
Magnitude-based pruning (Hassibi and Stork, 1993), Optimum brain damage 
(Le, 1990) and optimal brain surgeon (Hassibi and Stork, 1993) for the land 
cover classification. Those methods eliminate some of the connections based 
on the sensitivities and second order derivatives, followed by the re-training 
of the reduced network. It was shown in (Kavzoglu and Mather, 1998) that, 
the accuracy might increase to some extent when some connections are 
eliminated. On the other hand, these methods usually require many sequential 
steps and cannot be considered as automatic and simultaneous methods.

Selection of the related features from a comprehensive data is a challenging 
but critical problem since high number of inputs introduce more parameters 
into the mathematical ANN formulation. More concretely, selecting the 
best features to be employed both for offline and online applications is 
an inevitable task to fully integrate the benefits of machine. A detailed 
review on feature selection is provided in (Miao and Niu, 2016) and various 
advantages are provided in (Kavzoglu and Mather, 2002). Moreover, Verikas 
and Bacauskiene introduced an augmented cross-entropy error function 
for the classification problems using ANNs (Verikas and Bacauskiene, 2002) 
for the feature selection. Jensen et al. used Fisher Discrimination for the 
selection of ANN features (Jensen et al., 2001).



7

Several papers are present in the literature discussing training, MILP 
optimization and verification for neural networks using ReLU activation 
functions. Nevertheless, in this work, we discuss the nonlinear activation 
function case using the hyperbolic tangent (or a similar) to address the 
increased nonconvexity issues due to high nonlinearity in the hidden layer. 
Finally, proposed method not only detects the optimal features but also the 
number of neurons and the optimal connection configuration between them 
(Anderson et al., 2020; Bunel et al., 2020; Grimstad and Andersson, 2019; Lodi 
and Nagarajan, 2019; Rössig and Petkovic, 2021).

In a similar fashion, Dua proposed using a general mixed-integer optimization 
formulation to eliminate overfitting by detecting the optimal configuration of 
ANNs (Dua, 2010). Both number of neurons and existence of the interconnections 
are included in the objective function. Yet, this formulation does not consider 
the selection of optimum input variables. Moreover, resulting formulations are 
either mixed-integer linear programs with fixed parameter weights or small 
scale MINLPs with fixed structures, number of nodes and/or interconnections, 
exhibiting poor flexibility. On the other hand, this significant study shows that 
much better test, and thus prediction performance can be achieved with fewer 
neurons and connections.

In this study, a novel MINLP (mixed-integer nonlinear programming) 
formulation is developed for the simultaneous design and training of an 
optimal architecture feedforward ANN (OA-ANN). This method requires 
the modification of traditional ANN equations. Suggested method not only 
accounts for the optimal features to be selected, but also for the optimal 
neuron number in the hidden layer and configuration of the connections 
among network variables. As a result, the optimal topology design problem 
can be simultaneously integrated with the training problem with a more 
flexible structure detection and efficient reduction in input space, in addition 
to significant reduction in network connections.  Moreover, please note that 
even though there are some widely used methods to reduce overfitting using 
cross validation, these methods usually require several sequential trial and 
fitting steps to detect the optimal number of neurons and features. Conversely, 
the proposed MINLP-based method realizes the steps in a simultaneous and 
automatic fashion. Optimum structure, features and connections are obtained 
after solving only one optimization problem, which is flexible and fine-tuned 
by further modifications in the formulation based on problem-specific needs 
or computational power. A heuristic solution approach is developed for the 
highly non-convex MINLP formulation with significant number of both discrete 
and continuous decision variables. The details of the approach are provided 
in the methodology section. Next, the implementation on industrial plant is 
presented. Last section concludes the study.
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Process Description

Ethylene oxide (EO), a captive feedstock for ethylene glycols (MEG, DEG, and 
TEG), is produced through selective oxidation of ethylene and oxygen in the 
presence of an Ag supported α-Al2O3 catalyst. The EO process, in SOCAR 
Türkiye Petkim Petrochemical plant, takes place in two parallel fixed-bed 
multi-tubular reactors at a temperature and pressure range of 240–260 °C 
and 17–18 bar, respectively. Both ethylene epoxidation and EO combustion 
occur in the reactors and only the former is desirable. Side reactions reduce 
the EO yield and an increase in CO2 emission from the plant. From the point 
of both safety and optimum control perspectives, the monitoring of the 
concentrations of the streams, which are measured through two separate 
online gas chromatography (GC) instruments, is of great importance. The 
former is designed for hydrocarbons and permanent gases whereas the latter 
focuses on the chlorine-based compounds. The operating strategy of the 
reactors is to maximize the EO yield under various operational constraints. 
The simplified process flow diagram of the process is shown in Fig. 1.

Figure 1. Simplified process flow diagram of EO process

With aging of the catalyst, the trade-off between selectivity and productivity 
becomes gradually more prominent. Along with the compensation of loss of 
active sites under the favor of increasing of the temperature, catalyst still 
provides sustainable commercial yields at the expense of excess feedstock 
consumption which in turns leads to boost GHG emissions by releasing more 
carbon dioxide (CO2) into the atmosphere. To maintain catalyst activity for a 
longest period possible, controlling process variables more preciously with a 
robust model is very demanding issue throughout the last two decades.
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Many criteria must be considered during EO production at the desired levels 
under the continuous and sluggish catalyst deactivation. Related information 
is obtained using the features given in Table 1. All the feed compositions 
are measured before the reactor (i.e., after EO and CO2 absorption section). 
Fresh VCM feed is introduced into the reactor inlet stream right before the 
reactor. Real-time optimization and automation of such a complex process 
is a challenging task, requiring significant effort in first principles and 
mechanistic modeling. Alternatively, Artificial Neural Networks (ANNs) are 
promising empirical models to estimate the product related variables from 
easily measurable variables (i.e. temperatures and pressures).

Table 1. Descriptions of the features and inputs

TAG Description Unit TAG Description Unit

Lean absorbent flow rate t/h Fresh C2H4 feed t/h

CO2 absorber top pressure kg/cm2 Fresh CH4 feed kg/h

Feed composition (C2H4) % (v/v) CH3Cl (methyl chloride) in the recycle ppm

Feed composition (O2) % (v/v)
VCM (Viniyl chloride monomer) in the 

recycle
ppm

Feed composition (N2) % (v/v) C2H5Cl (ethyl chloride) in the recycle ppm

Feed composition (Ar) % (v/v) Reactor A coolant pressure
kg/

cm2g

Feed composition (CH4) % (v/v) Reactor A inlet pressure
kg/

cm2g

Feed composition (C2H6) % (v/v) Flow rate to reactor A t/h

Feed composition (CO2) % (v/v) Fresh VCM feed to reactor A kg/h

Feed composition (EO) % (v/v) Product composition (EO) % (v/v)

Fresh O2 feed t/h

Methodology: Optimal Superstructure-based Design of ANNs

A feedforward ANN model is generally expressed as:

(1)

where f1 and f2 are output and hidden layer activation functions respectively. A 
typical activation function is the hyperbolic tangent function, which is used in 
this study. A and B are weight matrices; C and D are bias vectors; u is the input 
vector, and y is the output vector. Related ANN parameters to be calculated in 
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the training are all continuous, and theoretically unbounded. Moreover, their 
dimensions depend on the number of inputs, outputs, and number of neurons 
determined manually before training. As aforementioned before, identification 
issues of these ANN parameters usually result in poor testing performance.

The MINLP formulation suggested in this work introduces binary variables to 
the traditional ANN equations to represent the existence of network elements. 
The resulting superstructure formulation also takes the selection of the input 
variables (features) into account in addition to the number of hidden neurons 
and connections, which in turn maximizes the overall flexibility and strength of 
the formulation. Accordingly, the proposed MINLP problem, whose objective is 
to minimize the number of connections of the ANN, is given by:

(2)

where  is the Hadamard product operator; ui and yi are the ith input and 
output samples, respectively. N is the number of samples used for the training. 
Abinary,ij and Bbinary,ij are matrices with binary values representing the existence of 
connections. Nbinary and Ubinary are the binary vectors defining the existence of 
a neuron and an input, respectively. The existence of a particular connection 
between a neuron and an input is defined by the binary variable Bbinary,ij. Aij is 
the continuous weight parameter of the connection between the jth neuron 
and the ith output. Similarly, Bij represents the connection between an input 
and the corresponding neuron. As a result, the optimal input is detected by 
optimizing the input neurons for a fully connected feedforward network, which 
also eliminates the corresponding weights from Bbinary through the linking 
constraints. Such constraints further tighten the formulation and enable a more 
efficient search in the optimization as when the corresponding input neuron 
is not selected, or if it has zero weight, the corresponding input (or feature) is 
not preferred. Please also note that this formulation is easily expandible for 
deep neural networks for optimum connection configuration through several 
hidden layers.  is the upper bound for the overall training error. This way, a 
trade-off is included into the training, which in turn is expected to increase the 
test performance after implementing the proposed formulation. Several trials 
showed that the upper and lower limits corresponded to 4 and -4, respectively, 
for the continuous weight values for the tanh activation function. In order 
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words, activation function saturation occurs beyond these limits, in our case. 
Yet, interval analysis could also be performed to tighten the MINLP problem in 
a more rigorous way. Finally, please note that suggested formulation has the 
flexibility to result in a fully connected network once  is set to a small value. In 
other words, a fully connected ANN is the upper bound of the network obtained 
using the suggested formulation (OA-ANN).

Problem (2) displays highly nonlinear and non-convex behavior not only due to 
the presence of the nonlinear activation functions in layers but also because 
of the discrete decision variables.  There is notable number of papers in the 
literature addressing the solution of MINLP problems (Boukouvala et al., 2016; 
Kocis and Grossmann, 1988; Kronqvist et al., 2019; Schlueter, 2014). Some popular 
and efficient ways for solving MINLPs are discrete branch and bound methods 
(Lawler and Wood, 1966), generalized Benders decomposition (Geoffrion, 1972) and 
outer approximation (Duran and Grossmann, 1986). However, please note that 
these methods are proven to be efficient for convex problems; do not guarantee 
global convergence for non-convex problems and usually diverge unless being 
used with reformulation techniques (Smith and Pantelides, 1999). Commercial 
codes, employing special algorithms and reformulation/relaxation techniques 
for solving non-convex MINLPs to global optimality (Kesavan et al., 2004; Misener 
and Floudas, 2014; Sahinidis, 1996), are also available. These methods often 
decompose the original non-convex MINLP into mixed-integer linear programs 
(MILPs) and nonlinear programming problems (NLPs). As a result, the MILP can 
be solved via an efficient branch and bound, while the NLP is solved using a 
global nonlinear optimization algorithm. Unless a global algorithm is used for 
the decomposed NLP, the overall solution procedure might result in an infeasible 
point or even diverge. On the other hand, note that one vital drawback of the 
derivative based global methods is the required computational load.

Another alternative for solving non-convex MINLPs is to use derivative-
free evolutionary algorithms or to employ heuristic methods (Bonami and 
Gonçalves, 2012). Similar to rigorous methods, heuristic methods suggest 
decomposing the original non-convex MINLP. Yet, unlike rigorous and 
derivative based global optimization algorithms, the resulting NLP is solved by 
a local optimization method, which has proven to be efficient for certain type 
of applications (Pintarič and Kravanja, 2000; Wen and Ma, 2008).

In our case, the approach in (Kocis and Grossmann, 1988) was tested to solve 
Problem (2) and performed poorly due to the high non-linearity stemming from 
the activation functions as mentioned above. Further relaxation techniques 
might be employed, and the application of the aforementioned derivative free 
global methods may result in much better convergence performance (Joy et 
al., 2019; Schweidtmann and Mitsos, 2019). Yet, employing derivative based 
global algorithms and decomposition techniques in (Smith and Pantelides, 
1999) is not in the scope of this paper.
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In this work, an adaptive and evolutionary solution algorithm is used to solve 
the resulting non-convex MINLP problem. This method exhibits a similar idea 
with (Pintarič and Kravanja, 2000) and it decomposes the original MINLP into 
an integer program (IP) and a nonlinear program (NLP). IP comprises merely 
binary decision variables that can be adjusted during optimization, whereas 
NLP involves continuous decision variables. The IP stands on the outer loop and 
is solved via the genetic algorithm based IP solver of MATLAB while the inner 
loop NLP is solved using a rigorous derivative based NLP solver, IPOPT (Wächter 
and Biegler, 2006). Here, we should discuss the fact that while the inner NLP 
calculates the optimum weights and biases firstly under constraints specified 
by the genetic algorithm which optimizes the input variables and the existence 
of the neurons and connections based on the F*, the training error based on the 
particular architecture. Note that F and F* are equal only when NLP iterations 
result in a converged training. Nevertheless, the outer loop does not have the full 
domain knowledge and treats the lower level calculations a blackbox block, and 
thus we call it as a heuristic method. The implementation is shown in Fig. 2 and 
is not the most rigorous type neither in terms of dual decomposition nor bilevel 
programming. However, similar implementations and alternative heuristic 
MINLP solution approaches have found wide applications in the literature as 
well (Alipour et al., 2018; Elsido et al., 2017; Evins, 2015; Huang et al., 2019; Jerez 
et al., 2014). In order to circumvent this issue, more rigorous derivative based 
global MINLP solution algorithms could be utilized, which would result in global 
solutions (Grossmann, 2013). Yet, employing these types of algorithms is not in 
the scope of this work, the main aim is to show the potential of the suggested 
MINLP-based formulations. Finally, even the proposed heuristic method brings 
about a better tailored ANN structure compared to the fully connected ANN, 
which will be discussed in the case study section.

Figure 2. Overall heuristic solution structure
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The inner and outer loops are solved sequentially until the tolerance value of the 
original problem objective value, or the maximum wall clock time is reached. 
In this study, this criterion is on the change of the original problem objective, 
with a value of 0.01. This quasi-decomposition approach provided satisfactory 
performances in our cases. Investigations show that suggested method usually 
provides a sufficient heuristic solution in less than 3 min. Nevertheless, please 
note that training optimization problems for ANNs exhibit highly nonlinear and 
non-convex behavior, calling for many local and suboptimal solution points. 
Furthermore, suggested iterative solution method has the flexibility to result in 
a fully connected network.

Even though Problem (2) is generally a non-convex and large-scale MINLP 
problem, also quite challenging to solve to the global optimum, in show that 
suggested method usually provides a sufficient heuristic solution in less than 3 
min. On the other hand, training ANNs with derivative free solvers is a common 
subject (Kim and Han, 2000).

Finally, please note that IPOPT is a local solver and might add randomness to 
the outer problem as the IP solution is based on a black-box genetic algorithm. 
Thus, we do not propose any integer cuts to be provided during the iterations. In 
addition to that, sensitivity analysis of the proposed method might be of interest 
to fully assess the regularization of the optimal ANNs using heuristic solutions.

Case study on the Industrial Ethylene Oxide Plant

The proposed MINLP based approach is tested on the industrial EO plant using 
hourly measurements of 105 randomly selected days at various training ratios. 
The suggested MINLP problem has 221 continuous, including bias weights, and 
240 discrete variables.

Although the main focus of the proposed MINLP-based approach is in artificial 
neural networks, preliminary machine learning method are compared in 
order to justify the usage of ANN methods for the ethylene oxide plant. Initial 
studies on the soft sensor development for the plant show that artificial neural 
network and decision tree methods deliver the best performance in terms 
of testing instances. Detailed training and test performance comparison of 
different machine learning approaches at 80% training ratio are presented in 
Table 2a for mean squared error. All results are obtained using Sklearn toolbox 
of Python using 5-fold cross validation. Multiple linear regression and random 
forest results are reported by subtracting the large outliers from both train 
and test data set. Otherwise, very large values are obtained, which further 
illustrates that these methods are not preferable. Since both fully-connected 
and dropout neural networks delivered the best performance, it is concluded 
that neural networks are preferable for the investigated plant.
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Table 2a. Different machine learning method performance comparisons

Method
MSE

Training Test

Multiple Linear Regression 1.8 2.5

Random Forest§ 1.3 1.7

Decision Tree 0.0001 0.03

Support Vector Regression‡ 0.5 0.042

Fully Connected Artificial Neural Network (FC-ANN)¤ 0.005 0.02

Dropout Artificial Neural Network (DP-ANN) 0.01 0.012

§Trained using 500 estimators
‡Trained using radial basis functions
¤Trained using lbfgs algoritm in 200 epochs. Includes 10 hidden tanh neurons.

OA-ANN architecture using 20% of the data in the training is shown in Fig. 
3 as a typical demonstration. 9 inputs, out of 20, are selected from which 
connections exist to hidden layer as shown in Fig. 3 based on the simultaneous 
design and training proposed by this study. The thickness of the existing 
connections represents the absolute magnitude of the corresponding weight. 
In OA-ANN, only significant connections, both in terms of identifiability and 
prediction accuracy considerations, are maintained, eliminating the ineffective 
connections.

Figure 3. OA-ANN for 20% training data

In addition, the OA-ANN architecture in Fig. 3, with only 4 hidden layer neurons, 
does not have a fully connected architecture as the selected inputs do not 
have connection to all existing hidden neurons. As a result, a more efficient 
information flow is obtained through the network, in which redundant or 
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statistically insignificant connections are eliminated while still satisfying a 
desired accuracy in the training.

Selected features include feed composition of N2, Ar, C2H6 and EO, fresh C2H4 

and VCM feed, VCM, ethyl chloride concentration in the recycle, and flow rate 
of the reactor A. From process point of view, the chemical components (N2, Ar 
an C2H6), which is a subset of the selected features by the OA-ANN, act as inert 
in the reactor occupying a prominent place in the EO yield. Of these, ethane 
has been engaging into the surface reactions with VCM on the catalyst, and 
subsequently converting into ethyl chloride. This feature is also critical for the 
adjustment of selectivity.

Moreover, VCM concentration in the streams, both in recycle and fresh feed, 
are of central concern due to selectivity and parsimonious control of catalyst 
life.  EO composition in the feed has also an adverse effect on EO yield in the 
sense that it inhibits the desired reaction, which is partial oxidation of ethylene. 
Therefore, it is tightly controlled in EO absorber unit operation where the 
concentration of EO in the recycle is determined and kept minimum as much 
as possible. Other prominent features are fresh ethylene feed and reactor flow 
rate. These are the main drivers in the plant production rate, and therefore on 
the EO yield.  Therefore, identified features by OA-ANN have an impact on EO 
yield from the standpoint of process engineering.

Table 2b. OA-ANN and FC-ANN detailed performance comparison

OA-ANN FC-ANN DP-ANN

Train Test Train Test Train Test

Tr
a

in
in

g
 r

a
ti

o

70
%

RMSE 0.0045 0.005 0.0004 0.047 0.004 0.006

CV 0.065 0.093 0.017 0.296 0.051 0.061

MAE - 0.37 - 1.03 - 0.39

50
%

RMSE 0.003 0.0035 0.0004 0.031 0.004 0.045

CV 0.051 0.061 0.018 0.25 0.062 0.07

MAE - 0.49 - 4.53 - 0.6

20
%

RMSE 0.003 0.004 0.0001 0.0140 0.005 0.02

CV 0.046 0.061 0.008 0.147 0.058 0.09

MAE - 0.424 - 2.481 - 3.2

In order to include another comparison, dropout regularized ANN (DP-ANN) 
comparison is also added in this step.  Yet, the main focus of this study is to 
compare the performance of the proposed method with the fully-connected 
neural networks. As mentioned earlier, DP-ANN method includes a random 
generation based algorithm. Detailed training and test performance 
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comparison of FC-ANN, dropout layer ANN (DP-ANN) and OA-ANN at various 
training ratios (i.e. 20%, 50% and 70%) are presented in Table 2b including some 
common statistical measures. Please note that the results of Table 2a and 
Table 2b are obtained in different instances and using unlike shuffled data for 
the same dataset. Therefore, ANN results are not the same in the two tables. 
A maximum of ten neurons are used for all of the ANNs since this number of 
neurons provides acceptable performance in Table 2a.

Table 2b includes root mean square error (RMSE), coefficient of variation (CV) 
and maximum absolute error (MAE) as comparison metrics. Due to eliminated 
over-fitting, training and test performances of OA-ANN show a good 
agreement at all training ratios. Although FC-ANN demonstrates significantly 
lower training error with high number of connections, it suffers from larger 
test error compared to OA-ANN. Similar insights can also be obtained from 
CVs. Furthermore, it can also be observed that OA-ANN brings about better 
test performance not only for higher training ratios, but also for smaller ones. 
At the same time, even though DP-ANN provides better test performance 
than the FC-ANN and closer metrics to OA-ANN for larger training ratio, it 
has degrading performance for larger test ratios. This can be claimed to be 
expected since dropout is not preferable for lower training ratios due to its 
random nature; OA-ANN is more robust for all training ratios, which in turn 
shows another potential of the method for the investigated plant. In other 
words, this situation demonstrates that suggested method is advantageous 
for applications where limited number of data or measurements are available, 
which is a vital side-advantage. Accordingly, in all cases, test performance of 
OA-ANN is superior to FC-ANN despite higher training error.

The architecture comparisons are given in Table 3. The network dimensions 
of OA-ANN are significantly less than FC-ANN in all training ratios, providing 
additional computational advantages when real-time ANN update is necessary.

Table 3. OA-ANN and FC-ANN architecture comparison

OA- ANN FC-ANN

20% 50% 70% -

Neurons 4 3 5 10

Connections 22 19 26 210

Inputs 9 9 8 20

As mentioned earlier, overfitting may cause poor test performance. Both FC-
ANN and OA-ANN test results are demonstrated in addition to normalized 
measurements in Fig. 4. Impact of overfitting can be observed in Figure 4, where 
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different operation regimes are given with respect to time. Until sample number 
400, one can state that both FC-ANN and OA-ANN deliver similar prediction 
capability and are in good agreement with the actual data. Nevertheless, 
please observe that the OA-ANN provides much better prediction performance 
for a significant upset or change in the operating condition, as shown between 
sample numbers 400-500. This issue stems from high number of connections in 
FC-ANN, whose weights could not be identified based on the statistical content 
of the current training data. As a result, the FC-ANN provides worse prediction 
performance for changing operation window whereas the performance of the 
OA-ANN does not deviate significantly when the process window changes. 
Consequently, the OA-ANN is proven to be a better candidate for real-time 
optimization and control studies, compared to the fully connected ANN model.

Figure 4. Test data performance of OA-ANN and FC-ANN

Conclusion

Optimal design and structure synthesis for ANNs is a challenging but major 
task for data-driven real time optimization with ANNs embedded. Ineffectively 
large networks provide significant test errors due to over-fitting. In this study, 
an MINLP-based optimal structure detection and feature selection method 
is proposed. Connection subset selection using an MINLP helps minimizing 
overfitting effect by eliminating the corresponding weight. As a result, 
information flow from the corresponding path is eliminated, resulting in reduced 
correlated or redundant information flow. Moreover, suggested formulation 
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also takes the existence of neurons and inputs into account in the MINLP 
as decision variables. Resulting method, called as OA-ANN, provides better 
estimation capability in various training ratios, more robust the prediction 
of different operating conditions. In fact, proposed method is more immune 
to lack of training data due to reduced overfitting. Furthermore, the heuristic 
MINLP solution algorithm results in a satisfactory network architecture and 
still has theoretical potential for development.

Suggested method is implemented on an industrial ethylene-oxide plant for 
real-time optimization purposes. Test performance of the proposed approach 
(OA-ANN) is significantly better compared to the fully-connected ANN (FC-
ANN), despite using approximately 10% of the connections and half of the 
inputs and neurons only. Reduction in the input space is also advantageous 
for the real-time operation, when sensor failures are under consideration. In 
addition, using this method, redundant sensors might be removed from the 
plant if the soft sensor development is the ultimate functionality.
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Abstract
Optimum selection of input variables, number of hidden neurons and connections between 
the network elements delivers the best configuration of an artificial neural network (ANN), 
resulting in reduced over-fitting and improved performance. In this study, a superstructure-
oriented ANN design and training algorithm is suggested and implemented on an industrial 
Ethylene Oxide (EO) plant for the prediction of product related variables (i.e. EO production 
rate). Proposed formulation is a mixed integer nonlinear programming problem (MINLP), which 
takes the existence of inputs, neurons and connections of the network into account by binary 
variables in addition to continuous weights of existing connections. Investigations show that 
almost 90% of the connections are removed compared to the fully connected ANN (FC-ANN) 
with 50% decrease in the number of inputs of the ANN, approximately. The modified ANN 
delivers a better prediction performance over FC-ANN, which suffers from over-fitting.

Keywords: machine learning; artificial neural networks; superstructure optimization; process 
modeling; mixed integer nonlinear programming

Introduction

Ethylene oxide (EO), a captive product used for the production of ethylene 
glycols (MEG, DEG, and TEG), is produced through selective oxidation of 
ethylene and oxygen in the presence of an Ag supported α-Al2O3 catalyst in 
the EO/EG plant located in the SOCAR Türkiye/Petkim Petrochemical plant 
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in Türkiye. The EO process takes place in two parallel fixed-bed multi-tubular 
reactors at a temperature and pressure range of 240–260 °C and 17–18 bar, 
respectively. Both ethylene epoxidation and EO combustion occur in the 
reactors and only the former is desirable. Side reactions reduce the EO yield 
and an increase in CO2 emission from the plant. From both safety and optimum 
control perspectives, the monitoring of the concentrations of the streams, 
which are measured through two separate online gas chromatography (GC) 
instruments, is of great importance. The former is designed for hydrocarbons 
and permanent gases whereas the latter focuses on the chlorine-based 
compounds. The operating strategy of the reactors is to maximize the EO 
yield under various operational constraints. The simplified process flow 
diagram of the process is shown in Fig. 1.

Figure 1. Simplified process flow diagram of EO process

High number of criteria is considered during EO production at the desired 
levels under the continuous and sluggish catalyst deactivation. These criteria 
lay the foundation of the features of information matrix exploited throughout 
this study as detailed in Table.1. All the feed compositions are measured 
before the reactor (i.e., after EO and CO2 absorption section). Fresh VCM feed 
is introduced into the reactor inlet stream right before the reactor. Real-time 
optimization and automation of such a complex process is a challenging 
task, requiring significant effort in first principles and mechanistic modeling. 
Alternatively, Artificial Neural Networks (ANNs) are promising empirical models 
to estimate the product related variables from easily measurable variables 
(i.e. temperatures and pressures).
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Table 1. Descriptions of the features and inputs

TAG Description Unit TAG Description Unit

Lean absorbent flow rate t/h Fresh C2H4 feed t/h

CO2 absorber overhead pressure
kg/

cm2g
Fresh CH4 feed kg/h

Feed composition (C2H4) % (v/v) CH3Cl (methyl chloride) in the recycle ppm

Feed composition (O2) % (v/v)
VCM (Viniyl chloride monomer) in the 

recycle
ppm

Feed composition (N2) % (v/v) C2H5Cl (ethyl chloride) in the recycle ppm

Feed composition (Ar) % (v/v) Reactor A coolant pressure kg/cm2g

Feed composition (CH4) % (v/v) Reactor A inlet pressure kg/cm2g

Feed composition (C2H6) % (v/v) Flow rate to reactor A t/h

Feed composition (CO2) % (v/v) Fresh VCM feed to reactor A kg/h

Feed composition (EO) % (v/v) Product composition (EO) % (v/v)

Fresh O2 feed t/h

Methodology: Optimal Superstructure-based Design of ANNs

The standard application of ANNs includes using fully connected networks, 
where all inputs, neurons and outputs are entirely connected. Fully connected 
ANN architectures (FC-ANNs) have high number of parameters. Typically, as 
the dimensions get larger, higher number of connections and parameters are 
introduced. It is usually expected that the increase in the number of parameters 
provides higher capability of fitting to the training data. Nevertheless, it is 
worthwhile here to mention that this increase may easily result in overfitting, 
and therefore poor prediction capability of the ANN model. Introducing more 
data is usually not a satisfactory effort as new data do not carry additional 
statistical information unless they are collected from a different location in the 
plant. A feedforward ANN model is generally expressed as:

(1)

where f1 and f2 are output and hidden layer activation functions respectively. 
A typical activation function is the hyperbolic tangent function, which is used 
in this study as well. A  and B  are weight matrices; C and  D are bias vectors; 
u is the input vector and y is the output vector. Related ANN parameters are 
all continuous, and theoretically unbounded, and their dimensions depend on 
the number of inputs, outputs, and number of neurons which is determined 
manually before training. Identification issues of these ANN parameters may 
result in poor testing performance. A typical solution to this problem is to 
include a regularization term to penalize the large values of ANN parameters, 
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which unfortunately cannot regularize the hyper parameters ([1]). Pruning is 
another method to reduce the number of connections in ANNs ([2-3]). Dua 
proposed using a general mixed-integer optimization formulation to eliminate 
overfitting by detecting the optimal configuration of ANNs ([4]). Both number 
of neurons and existence of the interconnections are included in the objective 
function. Yet, this formulation does not consider selection of optimum input 
variables. Moreover, resulting formulations are either mixed-integer linear 
programs with fixed parameter weights or small scale MINLPs with fixed 
structures, number of nodes and/or interconnections, exhibiting poor flexibility. 
On the other hand, this significant study shows that much better test, and thus 
prediction performance can be achieved with fewer neurons and connections.

In this study, a novel MINLP (mixed-integer nonlinear programming) 
formulation is developed for the design and training of an optimal architecture 
feedforward ANN (OA-ANN), by modifying traditional ANN equations. The 
MINLP formulation introduces additional binary variables to the traditional 
ANN equations to represent the existence of network elements. The resulting 
superstructure formulation also takes the selection of the input variables 
into account in addition to the number of hidden neurons and connections, 
which in turn maximizes the overall flexibility and strength of the formulation. 
Accordingly, the proposed MINLP problem, whose objective is to minimize the 
number of connections of the ANN, is given by:

(2)

where  is the Hadamard product operator; ui and yi are the ith input and 
output sample respectively. N is the number of samples used for the training. 
Abinary,ij and Bbinary,ij are matrices with binary values representing the existence of 
connections. Nbinary and Ubinary are the binary vectors defining the existence of 
a neuron and an input, respectively. The existence of a particular connection 
between a neuron and an input is defined by the binary variable Bbinary,ij. Aij is the 
continuous weight parameter of the connection between the jth neuron and 
the ith output. Similarly, Bij represents the connection between an input and 
the corresponding neuron.  is the upper bound for the overall training error. 
This way, a trade-off is included into the training, which in turn is expected to 
increase the test performance after implementing the proposed formulation. 
Please note that suggested formulation has the flexibility to result in a fully 



26

connected network once  is set to a small value. In other words, a fully connected 
ANN is the upper bound of the suggested formulation. Problem (2) is a non-
convex, and generally a large-scale MINLP, which is quite challenging to solve 
to the global optimum. In this work, an adaptive and evolutionary algorithm 
is used to solve the resulting non-convex MINLP problem. This method has 
a similar idea with [5] and it decomposes the original MINLP into an integer 
program (IP) and a nonlinear program (NLP). IP’s only include binary decision 
variables that can be adjusted during optimization, whereas NLP’s only involve 
continuous decision variables. The IP stands on the outer loop and is solved 
via the genetic algorithm based IP solver of Matlab while the inner loop NLP 
is solved by using IPOPT ([6]). Two problems are solved sequentially until the 
tolerance value of the original problem objective value or the maximum wall 
clock time is reached.

Please note that IPOPT is a local solver and might add randomness to the 
outer problem as the IP solution is based on a black-box genetic algorithm. 
Thus, we do not propose any integer cuts to be provided during the iterations. 
In addition to that, sensitivity analysis of the proposed method might be of 
interest to fully assess the regularization of the optimal ANNs using heuristic 
solutions, which is left as a future study. A global NLP solver can also be used 
for the inner problem to deal with the aforementioned challenges. On the other 
hand, investigations show that suggested method usually provides a sufficient 
heuristic solution in less than 3 min.

Results and Discussion

The proposed MINLP based approach is tested on the industrial EO plant. 
Corresponding data cover hourly measurements of 105 randomly selected 
days. We tested different training ratios, e.g. 20%, 50%, and 70%, to demonstrate 
the impact of the approach. OA-ANN architecture from the training with 20% 
of the data is shown in Fig. 2 as a typical demonstration. In the design of OA-
ANN with 20% of the data for training, 9 inputs, out of 20, are selected from 
which connections exist to hidden layer as shown in Fig. 2. The thickness of 
the connections represents the absolute magnitude of the corresponding 
weight. Note that only significant connections are maintained, eliminating 
the ineffective connections and thereby tightening the non-linear training 
optimization problem.
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Figure 2. OA-ANN for 20% training data

In addition, the OA-ANN architecture, with only 4 hidden layer neurons, does 
not have a fully connected architecture as the selected inputs do not have 
connection to all hidden neurons. As a result, a more efficient information flow 
is obtained through the network. On the other hand, there are many different 
architectures which may deliver a similar performance since the MINLP 
problem is highly non-convex and inherently contains input multiplicity both 
due to input variable correlations and parameter dependencies. Accordingly, 
the heuristic solution method and even the optimization algorithm tuning 
parameters might result in different architectures. The selected inputs include 
the lean absorbent flow rate, absorber overhead pressure, feed composition 
of N2 and Ar, feed CO2 composition, fresh O2 feed, fresh CH4 feed, Vinyl chlorine 
monomer and ethyl chloride feed. Note that some input variables show 
significant correlation and there are many subset combinations to deliver a 
similar performance. Thus, the selected inputs, likewise the structure in Fig. 2, is 
not a unique solution; different initial guesses and MINLP solution approaches 
would result in a different optimal subset. Fig. 2 also reveals the impact of 
the input variables on the network, which is represented by the thickness 
of the connection and scaled by the corresponding weight. For instance, N2 
composition in the feed contributes to the network calculations in smaller 
scale compared to the chlorine compounds, which have a significant impact 
on the process control. A similar observation is also valid for O2 feed, as well.

Detailed training and test performance comparison of FC-ANN and OA-ANN at 
various training ratios are presented in Table 2 which includes some common 
statistical measures.

Table 2. OA-ANN and FC-ANN detailed performance comparison

Train ratio 20% 50% 70%

OA-ANN FC-ANN OA-ANN FC-ANN OA-ANN FC-ANN

Train Test Train Test Train Test Train Test Train Test Train Test

RMSE  0.003 0.004 0.0001 0.0140 0.003 0.0035 0.0004 0.031 0.0045 0.005 0.0004 0.047

CV  0.046 0.061 0.008 0.147 0.051 0.061 0.018 0.25 0.065 0.093 0.017 0.296

MAE - 0.424 - 2.481 - 0.49 - 4.53 - 0.37 - 1.03
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Table 2 includes root mean square error (RMSE), coefficient of variation (CV) and 
maximum absolute error (MAE) as a comparison metric. Due to the eliminated 
over-fitting, the training and the test performances of OA-ANN show a good 
agreement at all training ratios. Although FC-ANN demonstrates significantly 
lower training error with high number of connections, it suffers from larger 
test error compared to OA-ANN. Similar insight can also be obtained from 
CVs. In all cases, test performance of OA-ANN is superior to FC-ANN despite 
higher training error. The architecture comparisons are given in Table 3. The 
network dimensions of OA-ANN are significantly less than FC-ANN in all 
training ratios, providing additional computational advantages when ANN 
update is necessary. Overfitting causes poor test performance as shown in 
Fig. 3. This issue stemms from high number of connections in FC-ANN, whose 
weights could not be identified based on the statistical content of the current 
training data. Both FC-ANN and OA-ANN test results are demonstrated in 
addition to normalized measurements in Fig. 3. Note that the OA-ANN has a 
better capability to predict a different operating condition, as shown between 
sample numbers 400-500.

OA- ANN FC-ANN

20% 50% 70% -

Neurons 4 3 5 10

Connections 22 19 26 210

Inputs 9 9 8 20

Table 3. OA-ANN and FC-ANN architecture comparison

Figure 3. Test data performance of OA-ANN and FC-ANN
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Conclusion

The design and synthesis of ANNs is a challenging and important task. 
Ineffectively large networks provide significant test errors due to over-fitting. 
Test performance of the proposed approach is significantly better compared 
to the FC-ANN, despite using approximately 10% of the connections and half 
of the inputs only. Reduced input space is advantageous for the real-time 
operation when model update or sensor failures are under consideration. 
Furthermore, the OA-ANN is superior in various training ratios, more robust to 
extrapolation and prediction of different operating conditions. The heuristic 
MINLP solution algorithm provides a satisfactory network architecture and 
still has theoretical potential for development. Our current focus includes the 
implementation to actual plant.
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Abstract
The performance of artificial neural networks (ANNs) is highly influenced by the selection 
of input variables and the architecture defined by hyper parameters such as the number of 
neurons in the hidden layer and connections between network variables. Although there are 
some black-box and trial and error based studies in the literature to deal with these issues, 
it is fair to state that a rigorous and systematic method providing global and unique solution 
is still missing. Accordingly, in this study, a mixed integer nonlinear programming (MINLP) 
formulation is proposed to detect the best features and connections among the neural network 
elements while propagating parameter and output uncertainties for regression problems. 
The objective of the formulation is to minimize the covariance of the estimated parameters 
while by i) detecting the ideal number of neurons, ii) synthesizing the connection configuration 
between those neurons, inputs and outputs, and iii) selecting optimum input variables in 
a multi variable data set to design and ensure identifiable ANN architectures. As a result, 
suggested approach provides a robust and optimal ANN architecture with tighter prediction 
bounds obtained from propagation of parameter uncertainty, and higher prediction accuracy 
compared to the traditional fully connected approach and other benchmarks. Furthermore, 
such a performance is obtained after elimination of approximately 85% and 90% of the 
connections, for two case studies respectively, compared to traditional ANN in addition to 
significant reduction in the input subset.
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Introduction

Energy producers are globally struggling with the inadequacy of energy 
resources and energy efficiency problems, which have become even more active 
in recent years due to COVID-19 pandemics. Another issue to be addressed 
in today’s world is energy efficiency which is a significant economic growth 
and prosperity metric. In particular, optimal energy production, distribution, 
and consumption have vital importance on the economic independence due 
to the increased energy efficiency. Accordingly, artificial intelligence (AI) and 
machine learning (ML) have emerged to be nice candidates to improve the 
efficiency of energy systems without requiring mass investments as opposed 
to converting all of the energy processing units. Typically, a software can be 
linked to an energy system and can alter its performance, and thus energy 
efficiency, using the state-of-the-art approaches on AI and ML.

Artificial Neural Networks (ANNs) are sophisticated models being able to 
represent complex relationships between inputs and outputs of a certain 
system/process. ANNs are data driven and, in particular cases, considered 
as an alternative to first principles-models because it is challenging to derive 
and validate such models due to unknown driving forces in the process 
and lack of spatial measurements [1]. The foundations of ANNs are laid by 
Mcculloch and Pitts in [2], in which the neural activity working mechanisms 
are discussed. Significant theoretical advancements have been achieved and 
these achievements have resulted in a wide range of applications showing 
promising performance [3–5].

Various research activities have also led to different terminologies and 
applications such as artificial intelligence, machine learning and deep 
learning [6–9]. Murugan and Natarajan designed a dynamic soft sensor 
to estimate the biomass concentration in a complex pilot plant from easily 
measurable plant variables (i.e. pH) [10]. Kaur and Kumari used ANNs to detect 
patterns and risks for diabetes [11]. The applications in mineral processing 
are discussed in [12]. Moreover, ANN related methods have found applications 
in energy economics and finance [13]. In [14], an ANN model is developed to 
forecast carbon emissions from several macroeconomic indicators such as 
economic growth. Air pollution forecast studies have used ANNs widely as well 
[15]. ANNs are also employed in advanced process automation technologies 
such as stochastic model predictive control [16]. MacMurray and Himmelblau 
showed the importance of nonlinear and complex processing capability of 
ANNs in a packed distillation column [17]. Biswas et al. modeled the energy 
consumption of residential sector through ANNs and showed a good match 
between prediction and measurements [18]. In addition, there are several 
successful applications in the literature in terms of using meta-heuristic and 
multi-verse optimization methods for the improvement of machine learning 
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models in general, resulting in more stable models. Such meta-heuristic based 
hyper-parameter tuning methods might also improve the capacity of neural 
networks if applied [19,20]. Ardiansyah et al. used ANNs for the prediction of 
quality variables and design strategy for an extraction process [21].

Traditional fully connected ANN architectures (FC-ANNs), which are defined 
by hyper parameters, are composed of single hidden layer in addition to input 
and output layers. Usually, a trial and error procedure on hyper-parameters 
is applied until a satisfactory training performance is obtained. Also, the 
number of connections, and the number of tuning parameters increase with 
the number of inputs, outputs and neurons. As a result, FC-ANNs suffer from 
parameter identifiability issues due to multiple solutions, lack of accountable 
measurements and over parametrization [22]. Overfitting and parameter 
identifiability problems result in large prediction bounds and therefore poor 
prediction performance, reducing the performance significantly especially in 
complex systems. Note that there are some alternative methods to eliminate 
some of the aforementioned issues using statistical measures [23]. The 
resulting uncertainty is also addressed in [24] using bayesian computation.

Group Method of Data Handling (GMDH) [25] develops relatively smaller 
polynomial models for the approximation of more complex models through 
elimination of unrelated variables. At the same time, GMDH can be classified 
as a more sophisticated pruning method. An external selection criterion, which 
is a nontrivial task to formulate with many different alternatives [26], is used to 
define the existence or the elimination of a particular network variable. Then, 
a sorting procedure [27] is applied for the selection of the best architecture 
among many generated networks. Due to sorting, GMDH can be classified 
under sequential approaches focusing on the elimination of neurons and 
inputs. In addition, GMDH does not include covariance of parameters into the 
objective function.

Dua suggested solving a general mixed-integer optimization problem to 
eliminate the connections of ANNs during training [28]. Both number of neurons 
and existence of the interconnections are included in the objective function to 
be minimized together with the training error. However, this formulation does 
not consider the parameter uncertainty and the selection of optimum input 
variables. Resulting problem formulations in the case studies are either mixed-
integer linear programs with fixed parameter weights -which are significantly 
easier problems to solve- or small scale MINLPs with fixed structures, fixed 
number of nodes and/or interconnections of the ANNs. Commercially available 
programming language GAMS (General Algebraic Modeling System) is used to 
solve the corresponding optimization problems. This significant contribution 
shows that increased performance can be achieved with fewer number of 
neurons and connections in ANNs. Similarly, in recent studies, the authors 
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showed that optimal structure detection for ANNs can also be realized using 
more flexible mixed integer nonlinear programming and piece-wise linear 
formulations [29–32].On the other hand, it is vital to state here that none of 
these formulations include the parameter uncertainty covariance, which is 
again a critical measure for reliable training and reduced overfitting for not 
only ANNs but also for almost all types of machine learning applications for 
regression. Thus, for truly effective structure detection for ANNs, uncertainty 
effect must also be incorporated into the existing MINLP formulations proposed 
by the authors.

Another significant aspect of ANN training is the selection of optimal input 
variables from a complex data set [33]. Usually, the leading signals are not known 
and the data set contains correlated or redundant variables. In such cases, the 
optimal selection of input variables becomes an important issue [34], which in 
turn calls for a robust method to reduce the number of ANN parameters and 
the input subset selection to provide a more robust identification.

Sun et. al utilized genetic algorithm for automatic design of Convolutional 
Neural Network architectures for image classification [35]. Benardos and 
Vosniakos proposed a genetic algorithm to modify the ANN architecture [36]. In 
a similar fashion, Dua developed a general mixed-integer program to eliminate 
some connections of ANNs during training [28]. Both the number of neurons 
and the existence of the interconnections are included in the multi objective 
function in addition to training error. Yet, these formulations do not consider 
the parameter uncertainty as a measure of overfitting and the reduction in the 
input space. On the other hand, it has been shown that a similar performance 
can be obtained with fewer neurons and connections.

In this study, a novel MINLP (mixed-integer nonlinear programming) formulation 
is developed for the automatic synthesis and training of an optimal feedforward 
ANN architecture (OA-ANN). Traditional ANN equations are modified and the 
training procedure considers the parameter uncertainty to eliminate overfitting. 
Main contributions of the proposed work are: i) detecting ideal number of 
neurons and selection of inputs by introducing binary variables in the MINLP 
formulation for regression problems through a heuristic yet tailored solution 
algorithm and ii) synthesizing the optimal information flow between neurons, 
inputs and outputs are characterized by introducing binary variable matrices 
as Abinary and Bbinary while minimizing the overfitting criterion by minimizing the 
parameter covariance as another objective in the optimization for regression 
problems to account for the tightening the prediction bounds of continuous 
output variables. To the best of authors’ knowledge such an approach does 
not exist in the literature. Moreover, to show the potential of improvement for 
energy systems, a case study about a strong data set on energy consumption 
predictions is considered in this work.
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The paper is structured as follows: In II, the derivation of the ANN (OA-ANN) 
expressions and the solution algorithm for the corresponding MINLP program 
is explained. Results of the proposed formulation and comparisons to FC-ANN 
and literature benchmarks are provided in III. Finally, section IV concludes this 
study.

Materials & Methods

A typical feedforward ANN expression is given by:

(1)

where f1 and f2 are output and hidden layer activation functions respectively; A 
and B are weight matrices; C and D are bias vectors; u is input vector and y is 
output vector. Note that identity activation function is used in this formulation 
at the input layer and it is not shown in (1) explicitly. The continuous ANN 
parameters A, B, C and D are estimated from preferably high number of samples. 
The dimensions of those parameters depend on the number of inputs, outputs 
and number of neurons (a hyper parameter), which is determined manually 
before training. In general, as the dimensions get larger, higher number of 
connections and parameters are introduced, which in turn provides higher 
capability of fitting to the training data.

The architecture given by (1) represents a FC-ANN which transforms the 
information in input, u, to the succeeding layers, and eventually to the output 
vector, y. Addition of a higher number of hidden layers is a straightforward 
mathematical task as more parameters, connections and neurons are 
introduced. This task is in the concept of deep learning, providing useful results 
in the literature [9,37].

FC-ANNs are traditionally trained through nonlinear optimization using the 
following objective function:

(2)

where ui and yi are the ith input and output sample respectively; and N is the 
number of samples used for the training.

Equation (2) takes the training error into account only and does not consider 
the parameter identifiability or architecture efficiency issues. However, the 
practical and structural limitations on the estimation of those parameters are 
vital in order to increase overall model quality and prediction robustness, and 
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to reduce overfitting. Otherwise, some parameters might have little impact 
on the output while exhibiting strong correlations among other parameters, 
making it almost impossible to identify them uniquely [38] despite significant 
computational load. The outcome of such problem would be the large variance 
in the ANN predictions due to the parameter uncertainty propagation to outputs 
and the poor prediction accuracy in the test data once there is a significant 
difference between training and the test data. In addition, the parameter 
correlation, which is caused by inefficient model architecture and high number 
of parameters, results in significant computational load during training or 
model update as optimization algorithm calculates similar objective function 
with distinct decision variable values although new data are collected for 
model correction in real time. An alternative straightforward method to avoid 
the aforementioned problems would be to include more training data, but is 
practically not useful mostly once the data are not measured in a distinct data 
regime. Another alternative is the modification of the model itself either by 
lumping some parameters, removing some of them by a statistical measure or 
fixing some of them to a particular value to reduce the parameter correlation, 
thereby eliminate overfitting. However, this method cannot be considered as 
automatic and requires significant manual effort.

One of the significant contributions of this work is the integration of the 
parameter uncertainty propagation together with the proposed MINLP method, 
which will be discussed later. Parameter covariance matrix is a measure of 
identifiability in complex models. Based on the Cramer and Rao theorem 
[39], the inverse of the Fisher Information Matrix (FIM) is a lower bound for 
parameter covariance matrix:

(3)

where  is the vector of estimated parameters;  the actual value of the 
parameters; FIM is  calculated from:

(4)

where σ2 is the variance of the output error; J is the parameter sensitivity 
matrix which is evaluated at a particular point. Small eigenvalues of FIM 
deliver large lower bounds for the parameters, which theoretically means that 
all parameters cannot be identified uniquely.

The parameter uncertainty can be propagated to the outputs through the 
traditional error propagation formulation [40]:

(5)



36

where covy is the covariance matrix of outputs; covp is the covariance 
matrix of parameters. Diagonal values of covy and  covp provides an intuitive 
understanding of the uncertainty since each element is the variance of the 
corresponding variable. From ANN perspective, once the values in covp 
decrease, corresponding ANN predictions deliver a tighter uncertainty range, 
resulting in a more robust and reliable prediction generally [41]. As a result, 
the selected features and connections of the neural network will provide more 
robust prediction capability.

The modified ANN (OA-ANN) equation to be taken into account as opposed to 
the standard formulation is given as:

(6)

where  is the Hadamard product (element-wise multiplication) operator; Abinary 
and Bbinary are matrices with binary elements, representing the connection 
existence of hidden layer neurons with the output layer and hidden layer with 
the input layer respectively; P is a binary vector which represents the existence 
of neurons; U is a binary vector which represents the input selection; f1 and f2 
are hyperbolic tangent activation function in this paper. Furthermore, please 
note that f1 and f2 are usually decided before training manually. Even though 
we propose to use hyperbolic activation functions in this study, suggested 
framework is also extendable to take into account the type of the activation 
functions as decision variables.

Mixed-integer programming typically considers the continuous and discrete 
decisions together to implement an optimization objective subject to 
constraints. For neural networks, the existence (or non-existence) off the 
features must be represented as a discrete, binary (0-1) decision variable 
whereas the corresponding weight values for training are continuous. The 
training formulation of OA-ANN is an MINLP problem and is given by:
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(7)

where γ is a tuning parameter to leverage the multi-objective nature of the 
problem; Pmin is the minimum number of hidden neurons; Pmax is the maximum 
number of hidden neurons. Lower and upper bounds (LB and UB) of continuous 
variables are shown using subscripts. These lower and upper bounds are set 
as -4 and 4, respectively.

Bbinary,ij is the existence of connection from the jth input as the input information 
is transferred to ith hidden layer neuron. Once Bbinary,ij is zero, the connection 
between jth input and ith neuron is eliminated since no information is transferred 
due to Bbinary,ij. Thus, once a particular column of Bbinary is zero; no information from 
the corresponding input can be transferred to the hidden layer. Corresponding 
Uj is set as zero by the algorithm. Similarly, once the value of P is zero, the 
information is not transferred through the corresponding neuron, which 
therefore means that the neuron is eliminated. In parallel, Abinary is the matrix 
of connection existence between hidden layer and outputs. All these rules are 
enforced via introducing logic constraints to the formulation in (7).

Equation (7) considers the parameter covariance in the objective function in 
addition to the training error, where both are highly influenced by the number of 
parameters and the connections in ANN. From Equation (7), optimal synthesis 
and training of the corresponding ANN can be employed automatically and 
simultaneously to obtain OA-ANN. This way, selection of the features and 
proper conditions are achieved subject to parameter uncertainty manifolds.

There are three types of methods to solve the corresponding mixed-integer 
type optimization problems, namely evolutionary and derivative-based 
methods. Two of them can also be combined in a hybrid sense to come up 
with meta-heuristic method, whose application area has been widening 
lately [42-44]. Typically, rigorous and derivative-based methods may require 
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substantial computational power to solve the MINLP problems to global 
optimality and is out of the scope of this paper. Yet, it must be here noted 
that suggested formulations bring about the possibility to obtain global 
ANN structures when solved with non-convex derivative-based methods. 
Therefore, in this study, an adaptive, evolutionary and heuristic solution 
algorithm together with a local optimization method is suggested for solving 
the non-convex MINLP proposed in this paper. Please note that similar 
adaptive methods described in the previous studies can also be utilized to 
solve the resulting MINLP problems. This method can also be implemented 
using open-source codes, which is another vital advantage over using many 
of the commercial solvers.

As mentioned earlier, an adaptive algorithm is selected and the main aim is to 
divide the original problem into two parts. Accordingly, the solution is obtained 
through a hierarchical decomposition of binary and continuous decision 
variables, as outer and inner loops similar to [45–47]. Accordingly, the outer loop 
optimization is an integer programming problem (IP) determining existence 
of the neurons (P), connections (ABinary, BBinary) and selection of input variables 
(U). After the outer loop is utilized, the inner loop will decide on the optimal 
weight values for a fixed neural network topology at the current iteration. 
This decomposition allows faster and effective solution of the original method 
albeit global optimal cannot be guaranteed.

The outer integer program is given by:

(8)

where γ’ is the maximum desired training error. Note that, the multi objective 
optimization formulation in Equation (7), is further modified and training 
error term is considered as a constraint to avoid the difficulty in the 
determination of γ. In practice, larger value of γ in the solution of Equation 
(7) may result in over simplification of the model, which in turn causes poor 
training performance.
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The inner loop optimization problem is given by:

(9)

The inner loop is a nonlinear programming problem (NLP), used typically for 
training a particular architecture iterate given by Problem (8). The IP given in 
(8) is solved via the MIDACO solver [48,49], whereas (9) is solved via the open-
source IPOPT code [50] on an Intel i5 processor with 8GB of RAM running 
MATLAB 2020a.

Overall heuristic solution algorithm is shown in Fig. 1.

Figure 1. MINLP heuristic solution algorithm

The inner and outer loops are iterated sequentially until the pre-specified 
convergence (stopping) criterion is reached for the original problem. In this 
study, this criterion is on the change of the original problem objective, with 
a value of 0.01. Finally, it is still noteworthy to mention that better solution 
algorithms can be used while this study mainly focuses on the MINLP approach 
to combine the feature and structure detection together with the parameter 
uncertainty prediction for regression problems.

Results

This study focuses on two publicly available benchmarks from [51,52]. The 
performance of the proposed approach is compared to FC-ANN (Fully 
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Connected) and several other publications which focus on the same dataset. 
In addition, GMDH (Group Method of Data Handling) results are also provided 
using [53]. We decided to compare the proposed method with the GMDH so as 
to provide a benchmark using an active subject for pruning.

The performances are evaluated using Mean Absolute Error (MAE), Mean 
Square Error (MSE), Root Mean Square Error (RMSE), Coefficient of Variation 
(CV), and Mean Uncertainty (MU), which is a statistical criterion defined in this 
study, and are calculated from:

(10)

where yprediction,i is the prediction of the ith sample output; ymeasurement,i is the 
measurement of the ith sample output; N is the number of samples; covy,ii is the 
ith diagonal element of covy.

Case Study 1

The data set collected by the U.S. Census Service on Boston housing prices and 
the affecting factors are under consideration [54]. The dataset contains 506 
different samples of 13 inputs and single output as shown in Table 1. Randomly 
selected 50% of the data is used for training and normalized for numerical 
purposes.

Boston housing dataset is specifically chosen as a case study since it contains 
relatively low number of samples, and overfitting is highly likely when high 
number of parameters is introduced. In addition, it has many inputs based 
on residential and cultural measurements which contain some correlation 
inherently; and thus input selection and elimination becomes an important 
issue.
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Table 1. Variables of the Case Study 1
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1 per capita crime rate by town 3.6 8.6 0.0 89.0

2 proportion of residential zones for lots over 25K sq.ft. 11.4 23.3 0.0 100.0

3 proportion of non-retail business acres per town 11.1 6.9 0.5 27.7

4 Charles River dummy variable 0.1 0.3 0.0 1.0

5 nitric oxides concentration 0.6 0.1 0.4 0.9

6 average number of rooms per dwelling 6.3 0.7 3.6 8.8

7 fraction of owner-occupied units prior to 1940 68.6 28.1 2.9 100.0

8 weighted distances to five Boston employment centers 3.8 2.1 1.1 12.1

9 index of accessibility to radial highways 9.5 8.7 1.0 24.0

10 full-value property-tax rate per $10,000 408.2 168.5 187.0 711.0

11 pupil-teacher ratio by town 18.5 2.2 12.6 22.0

12
1000(Bk - 0.63)2 where Bk is the proportion of a 
particular resident group in town

356.7 91.3 0.3 396.9

13 % lower status of the population 12.7 7.1 1.7 38.0

Output Median value of owner-occupied homes in $1000s 22.5 9.2 5.0 50.0

Fig. 2 includes training and test performances of a FC-ANN containing 10 
neurons in the hidden layer. The FC-ANN contains 151 continuous parameters 
to be estimated. Accurate estimation of such a high number of parameters 
is theoretically challenging and likely to result in overfitting, considering 253 
training samples with 13 inputs.

Figure 2. The performance of FC-ANN with 10 neurons
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FC-ANN delivers a relatively better training performance due to high number of 
connections, neurons and inputs. On the other hand, a significant performance 
drop is observed for the test data due to overfitting, in this particular relatively 
smaller case study. The error bars of the predictions are obtained from (5), 
using the uncertainties in the parameters after the training. Please note 
that these measures could represent prediction robustness and reliability. 
(6) delivers the mean value of the predictions based on the mean parameter 
values at a particular architecture. Due to probable overfitting in FC-ANN, 
the prediction uncertainty and error are significantly large, which in practice 
means predictions might not reliable.

Solutions of (8) and (9) deliver the OA-ANN, whose performance is shown in Fig. 3.

Figure 3. The performance of OA-ANN with 2 neurons

Table 2 provides detailed statistical comparisons based on the common 
measures. The performance increase is obtained through optimal architecture 
design and training. Note that all OA-ANN test errors and prediction uncertainty 
range are lower than FC-ANN as shown in Table 2, in this particular case. 
Corresponding OA-ANN architecture, which does not explicitly demonstrate 
the bias connections, is shown in Fig. 4.
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Figure 4. OA-ANN structure and connections for case study 1

As shown in Fig. 4, in this particular case, only 2 neurons (although maximum 
10 is allowed) are introduced with the elimination of proportion of non-retail 
business acres per town and nitric oxides concentration from the input set. 
Note that there is no connection between the corresponding input and any 
hidden neuron. In addition, OA-ANN contains a significantly fewer number 
of connections among variables; for instance, Charles River dummy variable 
provides information in the calculation of the output variable, through the 1st 
hidden neuron only. Furthermore, the connection line widths are scaled by the 
absolute values of the corresponding weight.

Table 2. Results of Case Study 1

OA-ANN FC-ANN [55] [56] GMDH

training

MAE 0.050 0.013 - - -

MSE 0.004 0.0003 - - 0.006

RMSE 0.067 0.019 - - 0.078

RMSE* 3.086 0.849 - 3.369 -

MU 0.018 0.278 - - -

test

MAE 0.058 0.097 - - -

MSE 0.009 0.024 - - 0.012

RMSE 0.096 0.155 0.187 - 0.119

RMSE* 4.331 6.990 - 7.602 -

MU 0.018 0.195 - - -

0.533 27998 - - -

Neuron 2 10 - 20 8

Inputs 11 13 13 6 6

Connections 22 151 - - 65

*Calculated without data normalization.

The OA-ANN, using fewer network elements, provides a comparable performance 
with the benchmarks in the literature and GMDH. In [55], an extreme learning 
machine confidence weighted method is proposed using 79% of the whole data 
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in training. [56] used 60% of the whole data, and reported radial basis neural 
network results using different number of neurons. [57] also refers to various 
other models and provides a performance comparison on Boston housing 
dataset with test RMSE* values between 3.206 and 7.610. In our particular case, 
OA-ANN has better performance compared to most of the other approaches.

Case Study 2

Our second case study is related to predicting the electricity consumption of 
a building. The dataset includes relatively higher number of samples, being 
with 4208 points, and is directly taken from PROBEN 1 benchmark problem set 
[52].  The dimension of the input vector is 14 in total as some of the inputs are 
lumped into each other in the original dataset [58]. The electricity consumption 
(WBE) is predicted based on year, month, date, day of the week, time of day, 
outside temperature, outside air humidity, solar radiation and wind speed. The 
statistical description of the dataset is summarized in Table 3.

Table 3. Statistical description of Case Study 2

Inputs

O
ut

p
ut

Mean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.0 0.0 0.6 0.3 0.1 0.2 0.3

Standard 
Deviation

0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 1.0 0.2 0.2 0.2 0.1 0.1

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.1

Maximum 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.7

Performance of the proposed OA-ANN on the prediction of building electricity 
consumption is compared with fully-connected ANN (FC-ANN) and GMDH, 
and two well-known benchmarks using the same dataset taken from the 
literature [59]. In [59], the authors used single hidden layer feedforward ANN 
structure employing hyperbolic tangent activation functions. They introduced 
identification, additive and subtractive phases into their training algorithm 
as opposed to classical methods and sequentially analyzed the effects of the 
number of inputs and the number of neurons. 70 % of the whole data is used for 
all phases described in the paper. Results showed that reducing the geometry 
of the ANNs could yield much better test results.

In [60], a hybrid genetic algorithm-adaptive network based fuzzy inference 
system is proposed to train feedforward artificial neural networks. 70% of the 
whole data is used for training. This paper also proposes an optimization-
based training method and reduces the size of the ANNs using sequential 
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analysis. However, this method is not an automatic and simultaneous design 
and training method and does not take the covariance of parameters into 
account.

The proposed method is implemented with 15 maximum number of hidden 
neurons (Pmax), using 70% of the whole data for training. Same training and test 
dataset, input and neuron numbers are implemented to FC-ANN and GMDH 
for fair and clear comparison. All results are reported in Table 4.

Results for OA-ANN show that the method proposes to use 6 inputs, being year, 
month, type of day, temperature, solar radiation and wind speed.

Table 4. Results of Case Study 2

OA-ANN FC-ANN [60] [61] GMDH

training

MSE 0.0026 0.0009 0.008 - -

MAE 0.042 0.038 - - -

CV 12 10 12 9.6 11.3

RMSE 0.051 0.03 0.09 - 0.07

MU 0.0043 0.015 - - -

test

MSE 0.002 0.0043 0.02 - -

MAE 0.041 0.06 - - -

CV 9.3 11 13 10 11.1

RMSE 0.046 0.065 0.14 - 0.069

MU 0.0044 0.016 - - -

2.8 1.2×106 - - -

Neuron 5 15 4 4 6

Inputs 6 14 10 5 7

Connections 23 241 49 29 55

Figure 5. OA-ANN structure and connections for case study 2
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As shown in Fig. 5, in this particular case, 5 neurons (out of 15) are selected. 
Similar to first case study, the connection line widths are scaled by the absolute 
values of the corresponding weight.

Table 4 provides detailed statistical comparisons based on the common 
measures. Coefficient of Variation (CV), which is used in other benchmarks, is 
also included into this case study [60]. Table 4 shows that OA-ANN includes 
23 connections among all variables in total, which is significantly fewer than 
the FC-ANN. Accordingly, OA-ANN exhibits poor training performance than 
the FC-ANN in all statistical metrics except mean uncertainty. On the other 
hand, OA-ANN provides better test performance than the traditional FC-ANN 
in spite of using fewer numbers of inputs, neurons and connections. Such 
improved prediction quality increase is obtained with almost 90% decrease in 
the number of connections compared to FC-ANN.

Similarly, the benefit of size reduction and pruning for ANNs in the context 
of optimization can be observed from [60], whose performance is relatively 
better compared to other benchmark studies using the same dataset [60]. 
Even though OA-ANN has poorer training performance compared to [60], OA-
ANN exhibits the best test performance among all benchmarks reported in this 
paper, both in terms of reduced standard deviation and test error. The main 
reason for this observation is the fact that OA-ANN considers the covariance 
of the parameters as an optimization metric to be minimized, in addition to 
the training objective function. As a result, uncertainty regions of the OA-
ANN predictions are tightened, as shown in Table III. This tightening ultimately 
brings about much fewer values for MU, CV and , which in turn 
enhances both accuracy and precision of model predictions.

Conclusions

This study focuses on the simultaneous optimal architecture ANN design and 
training algorithm under parameter uncertainty and uncertainty propagation 
considerations for regression problems; in contrast to traditional approaches 
where the structure is fixed by predefined hyper parameters based on trial 
and error procedure. The existence of the connections, the selection of input 
variables and the determination of the number of hidden neurons together with 
connection weights are under consideration. The main aim of this formulation 
is to obtain the optimal ANN structure, and to train this structure with the most 
dependable input variables considering the parameter identifiability issues 
to deliver a prediction with lower confidence interval, or to be more precise, 
uncertainty.

The proposed approach integrates the design and training simultaneously 
through an MINLP problem which is decomposed for the utilization in 
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successively solved smaller optimization problems, mainly IP and NLP. The 
MINLP problem involves the training error and the parameter covariance matrix 
as an uncertainty measure. It also ensures the selection of identifiable set of 
parameters, resulting in a more robust prediction performance. Furthermore, 
the MINLP problem includes extra logic constrains for a more efficient solver 
performance.

The proposed MINLP formulation is comprehensive, sophisticated and 
modifiable to other ANN types (i.e. recurrent ANNs, Convolutional Neural 
Networks). However, similar to many machine learning algorithms, ANNs suffer 
from nonconvex optimization problem due to nonlinear activation functions 
and the performance is highly sensitive to initial guess and optimization 
algorithm, which might deliver local optimum with different ANN weights 
despite processing same training data. The proposed formulation further 
increases the complexity of the training problem by introducing binary 
variables to represent the existence of a particular network element. Such 
a desirable theoretical superiority calls for mixed-integer optimization 
algorithms whose global optimum finding capability is still limited with a 
complex nonconvex problem and require significant computational load due 
to rigorous formulation. On the other hand, convex MINLP solvers, similar to 
heuristic optimization algorithms, deliver a local optimum with a significant 
and computation time increases drastically since all variables are modified 
simultaneously in the iterations. For such considerations, in this study, a 
pseudo-decomposition is applied to obtain a satisfactory ANN architecture 
and performance through computationally favorable heuristic method. The 
proposed heuristic solution method also suffers from local optimality issues 
since no explicit modification is implemented to handle nonconvexity related 
problems. The integer programming stage in the nested algorithm enables 
the evaluation of any blackbox formulation in the inner loop; but makes the 
overall solution exposed to failures once the tuning of the corresponding stage 
optimization problem is poor or not compatible with the inner loop. In addition, 
the interactions of the layers might bring additional infeasibility problems since 
there the problems process different constraints. Some linking constraints are 
introduced to tighten the search space and bring computational efficiency. 
However, the proposed pseudo-decomposition benefits from rigorous 
formulations in the inner loop where nonlinear programming is performed 
with sophisticated mathematical developments including algorithmic 
differentiation. The development of pseudo-decomposition through using 
more sophisticated optimization algorithms with a better tuning combined 
with feasibility cuts and pumps would further increase the computational 
efficiency, which is under consideration for our future works.

The proposed approach is implemented on two publicly available datasets 
which are studied extensively in the literature. It is shown that, the current 
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approach provides a better test performance despite increased training 
error. Finally, the current research activities focus on extending the suggested 
framework for deep and recurrent neural networks and for synthesizing more 
efficient neural network based controller structures.
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Abstract
Integration of process flowsheet simulators and optimization algorithms is a prominent 
approach to address simultaneous design and optimization of processes, which is represented 
by a mixed integer nonlinear programming (MINLP) formulation. In this study, DWSIM, a free and 
rarely used simulator, is used as a black-box function for the evaluation in genetic algorithm in 
MATLAB. Proposed approach is implemented to a dimethyl ether process, calculating optimum 
processing conditions in addition to structural decision variables including the feedstock type, 
reactor, and separation unit selections. Results show that syngas has the major impact on the 
process economics and is significantly more economical feedstock although high number of 
additional processing units are required.

Keywords: superstructure optimization; mixed integer nonlinear programming; process 
synthesis.

Introduction

Chemical processes include complex and integrated pathways combined by 
several unit operations in which conversion occurs from feedstocks to valuable 
products. Such a conversion, in general, can be obtained through high number 
of alternative paths, which hinders the process architecture and operating 
condition selection under economic considerations and tightly ensured 
process constraints. Thus, a superstructure optimization problem formulation 
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addressing simultaneously the aforementioned issues has become an 
important research area over the past decades.

A mixed-integer nonlinear problem (MINLP) is formulated, in general, to 
obtain a smaller architecture from a larger superstructure that is predefined 
and includes all alternative units, flows and many other considerations. 
The resulting MINLP formulation includes integer variables to account for 
sequences of events, alternative candidates, and the existence of units, 
whereas the continuous variables represent states. The MINLP problem is 
flexible and can include various user-defined considerations from economic 
and environmental aspects [1].

Significant developments in theory and computation have provided substantial 
capabilities to solve various complex optimization problems over the past 
decades [2]. With many alternatives and modifications, MINLP solvers can be 
classified roughly into two major groups as rigorous, and heuristic based on 
solution approach. Rigorous solvers utilize all mathematical tools to exploit 
optimality through the explicit formulation of all superstructure elements and 
might ensure global optimality for many cases. As an alternative, black-box 
or evolutionary algorithms benefit from the patterns from successive function 
evaluations, rather than focusing on derivative-based iterations, to provide 
optimality. Evolutionary algorithms, although suffering from significant 
computational load and local optimality issues, might deliver practical and 
satisfactory solutions to complex MINLPs once the associated plant models are 
challenging to derive and requires a priori knowledge due to numerous unknown 
driving forces and their nonlinearly interacting nature [3]. In contrast, despite 
significant computational developments and theoretical advancements, 
rigorous solvers have scalability problems for large superstructures. In 
addition, integration of those to process flowsheet simulators which have 
widespread industrial use is a challenging task, hindering rigorous solver 
implementations. A significant fraction of superstructure optimization studies 
focus on commercial software [4]. On the other hand, some free alternatives, 
including DWSIM, might provide similar performance to commercial ones [5]. 
Teerapat and Amata used a DWSIM simulation environment to validate an 
optimized DME process [6].

This study focuses on the simultaneous design and optimization of a 
comprehensive DME process under several scenarios including different 
feedstock and unit operation prices using a free process flowsheet simulator, 
DWSIM, which is automated through Python. The superstructure involves 
different feedstocks which are processed through different reactors and 
separation units to be determined by the optimization problem in addition to 
some operating conditions. A genetic algorithm is used for the evolutionary 
solution of MINLP problem, which accounts for the existence of the units 
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and plant operating conditions. The case studies show different process 
configurations are required for profitability based on feedstock and product 
prices.

Superstructure of DME Production Process

Dimethyl ether is one of the prominent candidates for relatively clean and 
sustainable alternatives to fossil fuels. The increased demand for DME can be 
met from synthesis gas or methanol from biological waste [7].

Figure 1. Superstructure of DME production process

The proposed superstructure in this study is presented in Fig. 1. DME production 
might be obtained with dehydration of methanol and from various feedstocks, 
primarily from syngas, as an emerging trend to favor carbon management and 
biomass utilization. The conditions specified in the kinetic study of Nestler et al. 
were used for modelling methanol synthesis at three different catalyst density 
yields high to low conversion [8]. Sequential flash units separate syngas from 
methanol with minimal loss at different pressures. Next, DME is produced with 
preheated methanol in catalytic dehydration reactor with three conversion 
preferences. Pressurized and cooled reactor effluent consists of mainly water, 
methanol and DME, which is obtained using 30 Bar distillation column at high 
purity. Next, unreacted methanol and side product water recovered with two 
different distillation column arrangements. Side products are marketable/
recyclable as well.
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MINLP Formulation and Solution Method

Superstructure of DME process optimized with MINLP problem formulated as:

(1)

where tf is the project lifetime which is 20 years for this case; f is the tax rate; 
y1 and y2 are binary variables for commercial methanol and syngas feedstock 
selection, respectively; y3, y4, and y5 represent the selection of syngas to 
methanol reactor with corresponding mass flow rates m3, m4 and m5; y6, y7, 
and y8 methanol dehydration reactor selection variables; mF2 is the flash unit 
effluent; mT101,B is the bottom product of DME distillation column; y9 and y10 are 
one column and sequential two-column distillation route selection binaries, 
respectively; S is the income from the products. Equality constraints which 
include binary variables solely ensure selection of a single path among many. 
Commercial methanol and syngas stream mass flow rates are represented 
with m1 and m2. High to low DME reactor inlet stream mass flow rates are m6, m7 
and m8, respectively. m9 is 30-stage column and m10 is sequential two 15-stage 
columns mass flow rates. mF102,B is second flash unit bottom product stream that 
contains mainly produced methanol, mass flow rate. All produced or purchased 
methanol fed to DME reactor and this feed stream, mR2,in, expressed with fifth 
equality constraint. mT101,B is bottom product mass flow rate of DME recovery 
column which fed to selected separation route. T1, P1 are temperature and 
pressure of flash unit, and T2 DME recovery column feed stream temperature, 
respectively. Inequality constraints limit syngas feed mass flow for prevent 
exceeding equipment sizes which assumed fixed for practical calculation of 
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capital cost investments. The capital cost investment, IC, the operating cost, 
OC, is calculated from:

(2)

where FLANG is the correction for the liquid phase operations; CBM,i is the bare 
module cost of ith equipment which is related to the yi; CBM,j is the bare module 
cost of jth equipment which exist in the structure independent of the optimization 
problem; CMeOH and CSyngas are methanol and syngas prices, respectively; Qj and 
Cutility,j is the quantity and the unit cost of jth utility. Equipment purchases and 
operational cost calculations performed using [9] and updated to current 
prices using CEPCI. The distillation column fixed cost provided from ChemSep. 
Process equipment sizing considers the dimensions that could meet the highest 
production capacity. For this reason, even if there is a high investment cost 
in low-capacity production preferences, meeting the upper limit production 
capacity is ensured.

The MINLP problem in Eq. 1 is solved using Genetic Algorithm (GA) which treats 
the process flow sheet simulation as a black-box function which is evaluated in 
DWSIM. Python has a key role in the implementation of the MINLP problem as 
it provides the communication between DWSIM and MATLAB’s GA. A simplified 
information flow diagram is shown in Fig. 2.

Figure 2. Superstructure optimization information flow diagram

Results

MINLP problem in Eq. 1 has been solved using MATLAB R2021a and DWSIM v6 
on i5 9400 CPU 8 GB RAM Windows 10 x64 PC. In our case, the commercial 
methanol feedstock route results in an unprofitable process due to high 
purchase costs. The non-zero results of the solution are presented in Table 1.
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In our case, syngas is selected as the primary raw material thanks to its low 
cost despite subsequent unit operations and associated operating costs. The 
resulting architecture proposes the highest conversion reactor for methanol 
production to favor the DME production and methanol which can be sold as a 
side product in our MINLP formulation.

Table 1. Non-zero process variables and economic measures of optimal results of Eq. 1
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Temperature and pressure of flash unit maximize methanol yield while removing 
unreacted syngas. Produced methanol fed to medium conversion dehydration 
reactor to balance the DME conversion and related IC and OC. Sequential 
two 15-stage columns ensure the removal of high latent heat components 
while benefiting from the installation of large and single distillation column 
operations with high costs. The temperature of the feed stream as well as 
the temperature of the reboiler and condenser affect the efficiency of the 
separation process. However, feed stream temperature manipulation allows 
us to tune DME recovery column performance and operational costs. Overall 
process operation is performed at a maximum raw material rate within the 
defined operating window.

Conclusion

Optimum process design and synthesis under economic and environmental 
consideration is one of the contemporary challenges of the process systems 
engineering field. The idea of combining the advantages of process flowsheet 
simulators to obtain predictions without undergoing a significant modelling 
approach is useful once it is used in the black-box optimization algorithms 
which do not need first principal expressions explicitly. Integration of open 
source DWSIM simulation environment with black-box optimization solver 
enables us to simultaneously synthesis of process and optimization of 
conditions, unlike most studies which focus on commercially well-known and 
widely used software packages on a popular process for the architecture and 
processing condition calculation which accounts for feedstock selection, unit 
operation selection, catalysis selection, and related operating regimes. Such 
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a sophisticated integration of high number of process equipment alternatives 
and feedstocks results in a nonconvex and significantly nonlinear mixed-
integer nonlinear optimization problem. As a result, the global optimality of 
the proposed structure is beyond the scope.

A major decision variable on the plant profitability is determined by the 
feedstock, which is economically syngas over a wide price spectrum under 
current economic specifications. Furthermore, the proposed process flow 
diagram is comprehensive as it enables the selection of different-size unit 
operations to address the capacity, installation, and operating costs to 
deliver a realistic evaluation to some extent. Note that, the actual process is 
more complex than Fig. 1 and requires a more advanced MINLP formulation 
which also takes uncertainties of plant variables and time-varying prices into 
consideration in addition to other economic considerations such as inflation 
and other realistic details including depreciation, land prices, and many other 
issues. A more detailed process synthesis and the including the impact of the 
price uncertainties which are characterized by logistic issues and market 
demands is beyond the scope. Thus, the simulations are performed for a 
particular and acceptable price value under marketable feed and product 
compositions. The architecture is flexible to address those considerations and 
the impact of those variables on the ultimate plant design and operations 
conditions can also be calculated using the proposed scheme.
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Abstract
Heart disease diagnosis using few measurements is a challenging an important task 
considering the increasing population. Artificial Neural Networks (ANNs) are promising 
mathematical architectures once the training is performed in an elegant manner to avoid 
theoretical challenges related to high nonlinearity, nonconvexity using few input variables 
to ensure generalization capability. This study shows the impact of the piecewise linear 
approximation of nonlinear functions in ANN architecture and training problem to benefit 
from the mixed integer linear problem formulation for the simultaneous input selection and 
training to obtain mixed integer programming based ANN (MIP-ANN). Proposed formulation 
is further tailored through linking constraints to remove the connections from the eliminated 
inputs to favor parameter identifiability. A publicly available dataset is considered as a case 
study of whose results are also compared to traditional ANN with all inputs (FC-ANN) and a 
relatively more straightforward but common input selection method (SKB-ANN). The results 
provide a comparable performance despite significant reduction in the input space in addition 
to significant computational and theoretical advantages thanks to advanced formulation.

Keywords: Piecewise Linear Approximation; Input Selection; Artificial Neural Networks; 
Classification; Mixed Integer Linear/Nonlinear Programming.

 Introduction

An artificial neural network (ANN) model is formed by artificial neurons on 
several layers that emulate biological neurons and the synaptic connections. 
They are effective in identifying patterns and other underlying relationships 
in multidimensional data. They are also good at dealing with a large set of 
variables possessing non-linearity and complex structures. Each processing 
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node in the network receives and sums a set of input values and passes 
this sum through an activation function providing the output value of the 
node, which in turn forms one of the inputs to a processing node in the next 
layer. Activation functions are employed in order to decrease the number of 
iterations while they introduce non-linearity into the network and thus improve 
its performance. They can be categorized as trainable, learnable or adaptable 
activation functions (Apicella et al., 2021).

The power of a neural network depends on how well it generalizes from 
the training data. The number of training samples, network architecture, 
number of nodes, activation function are the main factors affecting 
generalization capability (Kavzoglu, 1999). Pruning and input selection 
(or feature selection) are of considerable importance to avoid curse of 
dimensionality, particularly when scarcity of training samples is the case 
(Kavzoglu and Mather, 1998, 2000).

The determination of underlying causes and risk factors of heart diseases is 
a complicated task with different time and spatially dependent contributions 
(Turaman, 2022). With high number of patients and time consuming health tests, 
the monitoring and evaluation of the resulting big data become a hindering 
process. The efforts to diagnose the heart failure through computational tools 
mostly focus on data driven methods due to limited knowledge on explicit first 
principle expressions. The recent trends include advancements in both data 
and algorithm level (Ahsan and Siddique, 2022). Machine learning classifiers, 
after entropy based feature engineering, have been used and delivered binary 
classification for the heart disease (Rajkamal and Karthi, 2022). The impact 
of some variables for the prediction of heart disease is investigated in (Pan et 
al., 2022). Recent trends in the prediction of heart disease are summarized in 
(Diwakar et al., 2020).

The main purpose of the study is to investigate the combinatorial effect 
of training sample size, activation function, and input selection through 
development of piece-wise linear equations in the training problem for 
classification purposes. To achieve this purpose the heart disease dataset from 
Statlog (270 samples) including 13 attributes were employed, and accuracy 
assessment was then conducted.
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Methodology

Artificial Neural Networks

A typical fully connected feedforward ANN expression is given by:

where fOL and fHL are output and hidden layer activation functions, respectively; 
wOL and wHL are output and hidden layer parameters, respectively; bOL and 
bHL are output and hidden layer bias vectors, respectively; u is the vector 
of inputs; p is the output vector which defines the individual probabilities 
when classification is under consideration. fOL is limited to some kind of 
normalization function (e.g., softmax), unlike fHL which has a lot more flexible 
nature. Both activation functions contribute to the nonlinearity and non-
convexity of the training problem with cross-entropy error formulation in the 
objective function:

where N is the number of training data; M is the number of outputs; pi is the 
probability prediction vector and calculated using the ith input vector, ui. Note 
that fOL performs the nonlinear mapping of hidden layer output, pi

HL, for the 
normalization to obtain the individual probability of jth output for the ith training 
sample using:

where pij
HL is the value of the jth output at ith training sample before normalization 

by output layer activation function. The traditional cross-entropy formulation 
in equation (2) is further modified to yield the following nonlinear optimization 
problem:
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Note that equation (4) is still nonconvex regardless of the hidden layer activation 
function due to natural logarithm and exponential function combination in the 
objective function. Furthermore, some common activation functions (e.g., tanh) 
introduce additional complexity to the optimization problem and the resulting 
problem suffers from aforementioned issues. In addition, such problem does 
not address the input selection.

Piecewise-approximated ANN training problem

The modified training formulation in equation (4) contains nonlinearities in 
natural logarithm, exponential term in addition to activation function all of 
which require a piecewise approximation to ensure a mixed integer linear 
programming (MILP) formulation. This study focuses on hyperbolic tangent 
and rectified linear unit activation function, which have significant applications 
in machine learning. However, the proposed formulation is easily adaptable 
to other functions, as well. Fig. 1 shows the approximation of the hyperbolic 
tangent, PWLtanh(x), using six discretization points and traditional tanh 
function for approximation capability demonstration. Note that the piecewise 
representation is constrained to the region where activation function slope is 
non-zero in order to reduce the activation function saturation problem during 
the training.

Figure 1. Piecewise linear approximation of hyperbolic tangent

Evaluation of a particular point using the PWLtanh(x) is calculated from the 
solution of MILP in (5):



63

where q is the value at which the hyperbolic tangent evaluation is desired; z 
is the result of the evaluation of PWLtanh(x); λ and β are additionally defined 
dummy variables to include a combination of piecewise lines based on the 
evaluation point and to ensure the convexity. The feasibility problem in (5) 
would deliver a better approximation of the original tanh function using more 
discretization points but brings about significant computational load due to 
the introduction of more variables.

Unlike tanh, ReLU which already has a piecewise linear shape, can be 
represented perfectly using the formulation in equation (6) with relatively fewer 
number of additional variables. In addition, the discontinuity at the origin, 
which causes some problems in the rigorous nonlinear optimization solutions, 
is also considered and handled in the proposed MILP formulation.

A similar formulation is derived for exponential function, although it is a convex 
function itself, for the MILP formulation, using the breakpoints given in Fig. 2 
which shows the PWLexp(x), a piece-wise linear approximation to exponential 
function.
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Figure 2. Piecewise linear approximation of exponential function

Similarly, the approximation of logarithm function, PWLlog(x), is shown in Fig. 3.

Figure 3. Piecewise linear approximation of logarithm function

Simultaneous ANN training and input selection formula

Equation (4), with some modification in the objective function compared 
to the traditional cross-entropy formulation, does not address the input 
selection issue and local solutions during the training. Equation (7) contains 
all aforementioned piece-wise linear approximation expressions for nonlinear 
and nonconvex functions in addition to linking constraints to eliminate the 
impact of an input once it is not selected during the optimization.
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where ub is the binary variable to represent the existence of an input; udesired is 
the number of inputs to be included in the training problem; wHL,min and wHL,max 
are the lower and upper bounds of wHL, respectively; K is the number of hidden 
layer neurons; R is the number of available inputs; PWLfHL  is the piecewise 
approximation of the activation function. Note that the binary variable for the 
input selection, ub, tightens the optimization search space through constraining 
the lower and upper bounds of the corresponding column of the wHL to zero, 
eliminating the information flow from particular input to the hidden layer, 
although it is not included in the ANN evaluation explicitly. Obtaining such a 
result is challenging for traditional regularization techniques as they do focus 
on the penalization of the weight magnitudes rather than eliminating them. 
Finally, note that wOL is not a decision variable in (7) to ensure MILP formulation 
by elimination of continuous variable multiplications and obtained after a 
fully connected ANN training, similar to idea proposed by extreme machine 
learning approach (Akyol, 2020).

Formulation in (7) enables the solution of the optimization problem using MILP 
algorithms benefiting from a wide range of decomposition approaches and 
piecewise convex nature during the iterations while performing relaxations. 
Such a superiority to deal with sophisticated and complicated equations 
in the classification problems enable the implementation of the feasibility 
cuts to tighten the search region during the iterations and ensure the 
global optimality once the problem is solved to satisfactory optimality gap 
(Wittmann-Hohlbein and Pistikopoulos, 2013). Once related equations are 
represented by enough breakpoints during the piecewise approximation, the 
corresponding optimum is also a satisfactory solution to original nonconvex 
mixed integer nonlinear problem (MINLP), whose global solution, especially 
at large-scale, is a challenging and computationally costly task. On the other 
hand, the proposed MILP formulation is strongly desirable, besides global 
optimality considerations, due to advanced decomposition techniques and 
computational capabilities, including parallelization, which are already 
implemented in solvers (Anand, Aggarwal and Kumar, 2017). In addition, the 
method is also useful to handle discontinuities in the activation function (e.g., 
ReLU), which might introduce additional problems when NLP solvers are used 
for traditional training problem.
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Table 1. Selected inputs for different training ratios, activation functions and 
architectures

 
 

ReLU tanh

SKB-ANN MIP-ANN SKB -ANN MIP-ANN

Training Sample Ratio [%] 10 50 10 50 10 50 10 50

Age         

Sex         

chest pain type         

resting blood pressure         

serum cholesterol in mg/dl         

fasting blood sugar > 120 mg/dl         

resting electrocardiographic results         

maximum heart rate achieved         

exercise induced angina         

oldpeak         

the slope of the peak exercise         

number of major vessels         

thal         

A major advantage of the proposed formulation is the simultaneous training 
and feature selection capability. Thus, a subsequent and decentralized input 
selection and training procedures are not necessary unlike the traditional 
sequential approach in which the training is performed after the inputs are 
selected using a relatively simpler method. Such a sequential approach might 
deliver poor test performance due to theoretical discrepancies between input 
selection mathematical approach and prediction model. Thus, the proposed 
method is superior as the inputs are selected taking the ANN architecture to be 
used for test purposes into account. In addition, the method provides additional 
robustness in terms of parameter identifiability issues, especially once the 
training sample size is small, by eliminating the connections from the input 
neurons to hidden layer. Although (7) does not introduce additional pruning 
capability yet, it can easily be extended for ANN architecture compression 
purposes through addition of more binary variables which represent the 
existence of connections in addition to already proposed binary variables.

Result

In this study, a novel methodology employing input selection and piece-wise 
approximation strategies were employed to obtain robust network solutions 
on publicly available and widely used classification data (Yazid et al., 2018). The 
main objectives of the research conducted here are threefold. Performances 
of SKB-ANN, which employs an easy-to-use data driven highest scoring input 
selection method based on the mutual info (Kozachenko and Leonenko, 1987), 
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and MIP-ANN architecture, which is obtained from using the mixed integer 
problem in (7) were compared to that of fully connected network with all 
inputs. The hypothetical challenge for the comparison includes the selection 
of very few number of inputs to exploit and demonstrate the potential of 
the proposed methodology in addition to address real-time management 
problems in biological systems where high number of measurements is 
cumbersome. In addition to the analysis of different architectures, the effect 
of activation functions (ReLU and tanh) was also analyzed for two training 
sample propositions. For representing limited data case, %10 of the samples 
was employed at the training stage. For the other case, half of the sample 
was employed for training. Equation (7) was solved using Gurobi (Gurobi 
Optimization, 2018) solver to which communication is performed through 
PYOMO (Hart, Watson and Woodruff, 2011).

To assess the robustness of the input selection methodology adapted in this 
study SKB-ANN and MIP-ANN architectures with different sampling rates and 
activation functions were set to search the two inputs that best represent the 
whole dataset (Table 1). Out of 13 input features, two features of the dataset 
were selected both algorithms. When the frequency of the selected inputs was 
considered, it was seen that chest pain type and thal were the most commonly 
(six times) were selected. This clearly show their high representativeness 
compared with the other features. Exercise induced angina, age, maximum 
heart rate achieved, the slope of the peak exercise are the other selected 
features. It is interesting to see that sex, resting blood pressure, and cholesterol 
level were not selected in any case. With the use of 50% of the whole dataset, 
chest pain type was always selected, which shows its importance in heart 
attack cases. Compared with SKB-ANN, proposed MIP-ANN was more robust 
in selecting input features based on training ratio and activation function 
changes.

Combinatory effect of network type (i.e., FC-ANN, SKB-ANN, MIP-ANN), 
activation function (ReLU and tanh) and sample size (10% and 50% ratios) on 
the classification performance were assessed on both training and testing 
datasets (Table 2). Although the highest classification accuracies were 
achieved by the use of fully connected network with the use of tanh function 
(»95% accuracy for training samples), the same setting yielded the lowest 
accuracies for the test data, which can be described as a typical overfitting 
behavior for large networks. Comparison of SKB-ANN and proposed MIP-ANN 
performances revealed that an accuracy improvement of 5-11% was obvious 
for the test dataset. It should be also mentioned that the use of tanh function 
outperformed the ReLU function with slight difference. Finally, it is interesting 
to see that the MIP-ANN architecture performed better with 10% of the dataset, 
which shows its superiority on limited training datasets.
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Table 2. Classification performance comparison for FC-ANN, SKB-ANN and MIP-ANN 
using only two selected inputs at 10% and 50% training ratios (TR)

FC-ANN SKB-ANN MIP-ANN

C1 C2 Acc. C1 C2 Acc. C1 C2 Acc.

R
eL

U

10
%

 T
R

. Tr

C1 14 1
0.889

14 1
0.815

14 1
0.778

C2 2 10 4 8 5 7

Ts

C1 99 36
0.662

112 23
0.654

105 30
0.761

C2 46 62 61 47 28 80

50
%

 T
R

. Tr

C1 63 6
0.857

58 11
0.785

62 7
0.793

C2 9 57 18 48 21 45

Ts

C1 71 10
0.800

54 27
0.681

67 14
0.741

C2 17 37 16 38 21 33

ta
nh

10
%

 T
R

. Tr

C1 14 1
0.963

11 4
0.778

14 1
0.778

C2 0 12 2 10 5 7

Ts

C1 89 46
0.617

71 64
0.694

112 23
0.778

C2 47 61 10 98 31 77

50
%

 T
R

. Tr

C1 65 4
0.948

54 15
0.800

62 7
0.793

C2 3 63 12 54 21 45

Ts

C1 63 18
0.756

58 23
0.704

67 14
0.741

C2 15 39 17 37 21 33

Conclusions

Data driven empirical models, since the inherent expressions do not specifically 
rely on the actual nature of the phenomena, are useful only once the training 
is performed after addressing several theoretical and practical challenges. 
Feedforward ANNs have a flexible mathematical capability to represent 
complex interactions among various data sources, including the systems 
biology field. Such flexibility is obtained through sophisticated integration 
of information from the inputs through nonlinear and nonconvex activation 
functions, resulting in high number of local solutions in the training problem 
and causing reproducibility issues. The proposed formulation still benefits 
from the nonlinear properties of the ANN expressions but eliminates the 
nonconvexity problems through a piecewise linearization  approach (Sildir and 
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Aydin, 2022). In theory, once the number of breakpoints is high for a particular 
nonlinear function, a satisfactorily similar performance is obtained with 
significant advantages in the related optimization problem. This study focuses 
on the development of such an approach for the classification problems and 
demonstrates the capability through publicly available dataset.

To the best of authors’ knowledge, the paper is novel in terms of addressing 
the simultaneous training and input selection on classification problems 
through mathematical reformulations in the traditional ANN training problem 
combined with high number of piecewise representations of nonlinear and 
nonconvex functions. Furthermore, the resulting MILP is a sophisticated 
alternative to traditional methods which employ a sequential approach with 
different mathematical considerations in the input selection and data driven 
model training, lacking the theoretical compatibility guarantee between the 
two. In our cases, despite different initial guesses for the ANN parameters 
and inputs, the converged architecture and weights are same and test 
performance is similar to training thanks to simultaneous training and input 
selection based on the actual ANN architecture. In addition, a computationally 
scalable and parallelizable optimization problem becomes available due to 
advanced decomposition and reformulation methods which are already 
embedded in existing software. This is an important aspect for the application 
to larger dataset and ANN architecture since the approach requires additional 
binary and continuous variable for the piecewise representation of nonlinear 
expressions. In our case, several breakpoints have resulted in satisfactory 
accuracy for approximation and can easily be increased once a better 
representation of the nonlinearity is required.

The rigorous formulation in the optimization problem, which includes the 
existence of inputs through binary variables and related linking constraints, 
delivered a more robust input selection performance at different training ratios 
or activation functions, compared to a common input selection algorithm 
which employs a statistical criterion on the data directly without evaluating 
the impact of the ANN architecture inherently. In addition, the method shows 
a better impact when low number of training samples is available. However, in 
all cases in this study, the training and the test performances are similar once 
the proposed formulation is used under different training ratios and activation 
functions. In other words, the method delivers an ANN architecture which does 
not suffer from overfitting problem, in our case, and better generalization 
capability. Note that such generalization does not require an explicit weight 
regularization and obtained through linking constraints in the training problem, 
but formulation is flexible to further penalization of the ANN weights, if desired.

Besides mathematical contributions, the study focuses on the very sparse 
representation of the available inputs and theoretical highest predictive 
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potential of the dataset is not the ultimate objective. However, it is a future 
work and should cover additional considerations on number of hidden neurons 
and layers in addition to data pre-processing at different training samples 
considering advanced shuffling techniques. This study is limited to hypothetical 
case in which a small architecture, which contains few neurons and, a practical 
and useful approach when high number of samples are employed in real-time 
such as heart disease diagnosis at a large population.
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Abstract
A mixed integer nonlinear programming (MINLP) formulation is developed for the automatized 
design of chemical and biological pathways. The proposed formulation is solved using rigorous 
algorithms and enables the selection of reactions whose rate constants have the highest 
sensitivity. Unlike the traditional parameter estimation approach, the training performance 
is introduced as constraint which is pre-defined to balance the architectural simplicity and 
fitting performance. Adjoint sensitivity expressions are additionally solved simultaneously in 
the formulation and the resulting parameter sensitivities are included in the objective. Binary 
variables are introduced in the linking constraints for the selection of a reaction subset from a 
more complex pathway, also tightening the search space for the optimization algorithm. The 
approach is implemented on a complex chemical/biological pathway which processes glycose 
as a primary feedstock. The ultimate and reduced pathway prediction bounds are significantly 
narrower and deliver similar mean predictions compared to large and full pathway, despite 
25% reduction in available reaction paths in the superstructure.

Keywords: Parameter identifiability; Mixed integer programming; Sensitivity; Uncertainty.

Introduction

Chemical and biological pathway models include a high number of rate 
expressions with tunable parameters to be estimated from the experimental 
data. The lack of spatial and temporal measurements might result in 
statistically ill-defined inverse problems with multiple solutions in parameter 
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estimation (Mclean and Mcauley, 2012). Furthermore, the computational load 
and identifiability problems increase once the disturbances and measurement 
noises appear especially when the model architecture is large.

Usually, trial and error procedures or sequential methods are applied 
for the architectural synthesis and parameter identifiability tasks, which 
require significant manual effort in addition to decentralized computations 
on theoretical level. In (Ramadan et al., 2018) the most sensitive parameter 
selection utilizing LASSO and applied to a biomechanical system. Shapiro 
et al. developed a heuristic algorithm to eliminate some parameters and re-
calculate the sensitivities until desired condition value is obtained (Shapiro et 
al., 2014).

A simultaneous approach using rigorous formulations to obtain the pathway 
architecture and corresponding parameters based on the parameter sensitivity 
values and their contribution to uncertainty is scarce, and would have the 
potential to exploit available statistical knowledge from experimental data 
for a better model development. This study focuses on the development of a 
mixed-integer formulation to perform architectural synthesis and parameter 
estimation tasks based on sensitivities in addition to the model training 
performance.

Methodology

A typical reaction pathway is represented by ODEs and given by:

(1)

where y is the vector of outputs which are typically concentrations; p is the 
vector of time-invariant parameters; t is the time; f is the vector of mathematical 
rate expressions.

The derivative of the terms in Eq. 1 results in forward sensitivity ODE for a 
particular parameter and output:

(2)

where sij is the sensitivity of jth output, yj, to ith parameter, pi. A simultaneous 
solution of Eq. 1 and Eq. 2 is required to address the specific considerations 
on parameter selection process to account for the model performance, 
additionally.
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A modified mixed integer formulation is developed for the architectural design 
and estimation of its parameters who have the highest sensitivity, eliminating 
the parameters with relatively smaller impact on the outputs. The formulation 
is given by:

s.t.

(3)

where sij,k is the sensitivity at sample time k; yk is the model prediction at k; ym,k 
is the measurement at k; e is the desired maximum training error; pi,min and pi,max 
are lower and upper bounds of ith parameter, pi, respectively; bi is the binary 
variable to account for the existence of pi; bmin and bmax are lower and upper 
bounds of number of parameters desired in the ultimate architecture.

Solution of Eq. 3 requires an explicit formulation for sensitivity ODEs for the 
rigorous approach, which calls for an automatic or symbolic differentiation. 
There are various solver packages which deliver such expressions (Andersson 
et al., 2019), which in turn mathematical reformulations and additional error 
from numerical approximations are avoided. On the other hand, sensitivity 
equations are mostly nonlinear and further mathematical reformulations and 
decompositions, in addition to dense discretization, might be essential for 
pathways with high complexity. In contrast to nonlinear optimization which 
applies to parameter estimation with fixed architectures, the proposed mixed 
integer formulation includes binary variables to account for the existence 
of particular parameter values which represent the reaction rate constant 
once they have a nonzero value. Linking constraints are also introduced to 
tighten the search space by fixing the parameter values while eliminating the 
corresponding reaction path from the network. The formulation is flexible and 
can address measurements and sensitivity considerations at desired sample 
times. Current formulation includes the selection of the parameters which 
deliver the maximum squared sensitivity at measurement points.
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The parameter covariance matrix for a particular architecture (cp) is 
subsequently calculated using bootstrapping method (Godo-Pla et al., 2019) 
for further analysis on the identifiability issues. The uncertainty in the outputs 
due to parameter variations is calculated using (Tellinghuisen, 2001):

(4)

where cy is the output covariance matrix; Sk is the sensitivity matrix at k.

The approach is implemented on a complex chemical/biological pathway and 
solved using BONMIN solver using PYOMO computation environment (Hart et 
al., 2011).

Results

The proposed approach is implemented on 5-Hydroxymethylfurfural (HMF) 
synthesis from glycose (Tang et al., 2017) which can be obtained through 
biological processes, providing a promising opportunity for sustainability 
considerations. The full network superstructure is shown in Fig. 1a, where 
several different reaction paths enable the production of a particular 
compound, which in turn contributes to identifiability of these paths. With a 
coupled and dependent set of ODEs, the unique estimation of the parameters 
becomes a challenging task and the proposed formulation is implemented 
to demonstrate the impact, unlike (Erturk et al., 2021) where sensitivity 
considerations are not included. Thus, in addition to six differential equations 
to represent the compounds, 72 additional sensitivity ODEs are introduced 
to account for 12 parameters in the full network. Once the simultaneous 
architectural synthesis and the parameter estimation are performed based 
on the selection of the most sensitive parameters, the resulting reduced 
network is presented in Fig. 1b.

 (a) (b)

Figure 1. Reaction pathway 
Full network (b) Reduced network
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The eliminated reaction paths from Fig. 1a are shown in Fig. 1b using red 
arrows. Next, the performance of the full network and the reduced network is 
compared in terms of prediction similarity and uncertainty. The uncertainty for 
the solutions is evaluated from the diagonal elements of cy which is calculated 
from Eq. 4 after bootstrapping procedures are performed.

Fig. 2a and Fig. 2b include solutions of pathway ODEs for the full network and 
the reduced network, respectively, for Fructose and FA+Humins. The mean 
predictions, which exclude the parameter covariance matrix and related 
propagation equations, show similar profile due to constraint in Eq. 3 to deliver 
a satisfactory training performance characterized by e. In turn, a similar profile 
is obtained despite elimination of four reaction paths as shown in Fig. 1b.

Figure 2. Mean solution and uncertainty interval for Fructose, FA+ Humins 
(a) Full network (b) Reduced network

As a result of numerical scale differences among pathway variables, the solution 
profiles for HMFaq and HMForg, are presented in Fig. 3b, from which the latter 
is for the reduced network. Compared to the other components, the impact 
on uncertainty on HMForg is less significant as the corresponding component 
related reactions have not changed (see Fig. 1a and Fig. 1b). However, some 
decrease in the uncertainty range is still observed due to a more robust 
parameter estimation which accounts for the identifiability.



77

Figure 3. Mean solution and uncertainty interval for HMFaq, HMForg 
(a) Full network (b) Reduced network

Table 1 includes a comparison on the maximum and minimum dependent 
variable values based on uncertainty at final time. The prediction bounds for 
the reduced model is significantly more tightened compared to the full network. 
However, a more drastic reduction in uncertainty is favored by the elimination 
of the reaction paths associated with a particular component.

Table 1. Impact on output uncertainty

Full Network
[´100]

Reduced Network
[´100] Difference

[%]
Min Max Min Max

Glucose 19.15 21.16 19.96 20.32 82.09

Fructose 1.41 3.35 2.28 2.56 85.57

HMFaq 0.05 0.15 0.09 0.11 80.58

HMForg 0.12 0.23 0.13 0.23 5.45

FA+Humins 1.89 2.29 1.99 2.14 62.50

FA+LA 0.00 0.10 0.00 0.09 10.00

Discussion

Traditional parameter estimation problems for complex pathways usually 
process a fixed architecture and include the training error in the objective 
function under physically constrained rate expression parameters. In contrast 
to traditional approach, the proposed mixed-integer formulation performs 
simultaneous architectural design and parameter estimation by adding binary 
variables which consider the existence of a particular path and tighten the 
search space during the optimization through linking constraints. The model 
training performance is introduced as a constraint to balance the structural 
reduction and fitting performance, since elimination of some reaction paths 
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from the superstructure hinders the fitting capability, in theory. Moreover, 
the simultaneous evaluation and consideration of sensitivity expressions 
enable the calculations to be performed by rigorous optimization algorithms, 
which can include advanced mathematical reformulations, decompositions, 
and approximations to account for various sensitivity requirements. Such a 
centralized processing of the complex problem delivers the best configuration 
and high identifiable parameters, especially when global or sophisticated 
solvers are utilized.

As a downside, the approach calls for more computational load compared 
to traditional methods, due to binary variables to represent the existence of 
parameters, evaluation of higher number of equations during optimization, 
additional nonlinearity terms, the rigorous solution algorithm delivers a more 
robust model architecture. Thus, subsequent tasks related to model update or 
control tasks become computationally more feasible.

A biochemical pathway is considered to demonstrate the impact of the 
approach. However, the problem formulation is flexible and can be further 
tailored to various applications. Current focus includes the development of 
sophisticated mathematical reformulations to address the computational 
problems when larger networks with more parameters are needed.
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Abstract
Plastics are engineering marvels that have found widespread use in all aspects of modern life. 
However, poor waste management practices and inefficient recycling technologies, along with 
their extremely high durability, have caused one of the major environmental problems facing 
humankind: waste plastic pollution. The upcycling of waste plastics to chemical feedstock 
to produce virgin plastics has emerged as a viable option to mitigate the adverse effects of 
plastic pollution and close the gap in the circular economy of plastics. Pyrolysis is considered 
a chemical recycling technology to upcycle waste plastics. Yet, whether pyrolysis as a stand-
alone technology can achieve true circularity or not requires further investigation. In this study, 
we analyzed and critically evaluated whether oil obtained from the non-catalytic pyrolysis 
of virgin polypropylene (PP) can be used as a feedstock for naphtha crackers to produce 
olefins, and subsequently polyolefins, without undermining the circular economy and resource 
efficiency. Two different pyrolysis oils were obtained from a pyrolysis plant and compared 
with light and heavy naphtha by a combination of physical and chromatographic methods, 
in accordance with established standards. The results demonstrate that pyrolysis oil consists 
of mostly cyclic olefins with a bromine number of 85 to 304, whereas light naphtha consists of 
mostly paraffinic hydrocarbons with a very low olefinic content and a bromine number around 
1. Owing to the compositional differences, pyrolysis oil studied herein is completely different 
than naphtha in terms of hydrocarbon composition and cannot be used as a feedstock for 
commercial naphtha crackers to produce olefins. The findings are of particular importance 
to evaluating different chemical recycling opportunities with respect to true circularity and 
may serve as a benchmark to determine whether liquids obtained from different polyolefin 
recycling technologies are compatible with existing industrial steam crackers’ feedstock.

Keywords: pyrolysis, pyrolysis oil, naphtha, waste plastic, chemical recycling, polyolefins, 
bromine number, PIONA, circular economy
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Introduction

Plastics are ubiquitous and versatile materials, and they are used in all aspects 
of modern civilization at tremendous quantities. Four hundred million tons (400 
Mt) of plastics are produced each year. It is estimated that the production of 
plastics will only increase and exceed one million tons by the end of 2050 [1–
5]. After being used for their intended purposes, plastics complete their useful 
lifecycles and are discarded. Some plastics such as straws and utensils are 
produced for single-use with a useful lifetime between seconds to minutes, 
whereas some plastics such as shampoo bottles or garbage bins can be used 
for longer durations with a useful lifetime between weeks to years. Regardless 
of the time scale at which plastic is discarded, their waste management 
becomes crucial because they degrade slowly. For instance, it takes up to 200 
years for a plastic straw to degrade naturally [6].

Although a simple comparison between useful lifetimes and natural 
degradation durations points out the importance of waste management 
of plastics to prevent their haphazard accumulations in the environment, 
existing infrastructures could not cope with the waste plastics, causing one 
of the biggest environmental challenges facing humankind: plastic pollution 
[1–3,5]. Global mass production analysis [7] of plastics shows that out of eight 
billion metric tons of plastics ever produced by 2017, 70% of them ended up in 
landfills or in aquatic life polluting our planet. 14% of them was incinerated to 
produce energy. Yet, this option causes emission of greenhouses gases such 
as CO2 at large volumes. The remaining 16% was recycled to obtain lower-
value materials with a low efficacy [8]. These methods are not environmentally 
friendly and cause continuous consumption of natural resources (from crude 
oil or natural gas to plastics to waste plastics), favoring a linear economy.

Plastics are, however, engineering marvels with high energy and chemical 
content. Producing 400 Mt plastics approximately require a consumption 
of 7% of crude oil and natural gas produced [3]. Considering the expensive 
and scarce fossil fuel resources used in plastic production, it is unfortunate to 
waste these resources for creating waste, polluting the environment, or losing 
their value to low-quality recycled products, which are oftentimes cannot be 
recycled after several life cycles [9–11]. This line of process can be considered 
as an example of linear economy because resources are linearly converted to 
plastics and eventually to waste. Although the linear system creates a massive 
economic value by producing and selling plastics, the result is the global 
waste plastic problem and loss of value and resources. New and innovative 
approaches are needed to replace the linear economy of plastics by the 
circular economy. There are currently a lot of efforts to break the linear system 
and repurpose or upcycle waste plastic to value added products. One of the 
most recent examples is the chemical conversion of single-use PE to lubricants 
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by a catalytic upcycling process using platinum nanoparticles supported on 
perovskites [8,12]. Producing lubricants from PE is of particular importance 
because they can be successfully recycled with infinite turns, creating a 
circular carbon economy [13,14]. The study also demonstrates that lubricants 
perform as well as their commercial counterparts and the conversion of PE to 
lubricants is economically feasible.

Another viable option that can truly close the gap in circular economy of 
polyolefins is the chemical conversion of waste to feedstock that are used 
to produce virgin polyolefins. Polyolefin precursors are produced from 
steam cracking of naphtha [15]. Naphtha is a hydrocarbon fraction, usually 
constituents 15–30 weight % of crude oil and has a boiling point range between 
30°C and 200°C. It contains hydrocarbon molecules with 5–12 carbon atoms, 
mostly including saturated hydrocarbons such as paraffins and naphthenes 
with minor compounds including olefins and aromatics [16]. There are two types 
of naphtha blends produced from the distillation of crude oil in the refineries: 
(i) Heavy naphtha which consists of mainly alkanes and cycloalkanes with 
a boiling point of 70 to 200°C and is used to produce aromatics [17], and (ii) 
Light naphtha (also known as low-boiling naphtha) which consists of mostly 
pentane and hexane derivatives and is fed to the steam cracker unit to produce 
polyolefin precursors [18].

If the objective is to obtain virgin polyolefins from the waste to achieve circularity, 
waste polyolefins should be converted to a compound that resembles of 
naphtha and fed to the cracker unit. This is only possible by chemical recycling, 
a process that breaks down longer polymeric chains into smaller units which 
can be recycled into a range of useful materials. Various chemical recycling 
methods, such as pyrolysis, gasification, and hydrothermal processing can be 
used to convert plastic wastes into gases, fuels, and other compounds. Yet, 
pyrolysis is a more viable choice if the intended product is a liquid that can be 
fed to the steam crackers. [19,20]

Pyrolysis is the thermal degradation of hydrocarbon-based feedstock 
materials by heating in an oxygen-free environment at high temperatures 
(300 – 700 °C). Because of heating, large chain polymers decompose into 
smaller hydrocarbons. The pressure is typically atmospheric although it can 
also be performed under vacuum. The pyrolysis performance also depends on 
the properties of the feedstock such as molecular structure including chain 
irregularities, branching, initiators, chain lengths and crystallinity, etc. When a 
pyrolysis-like technology is applied, carbon number of the cleaved polymers 
decrease, eventually reaching a point that it exists as liquid in pseudo-
equilibrium with its vapor in the pyrolysis reactor. The properties of the liquid 
obtained by pyrolysis can be very similar to conventional fuels (in terms of 
energy content, octane and cetane number, and other physical properties such 
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as density, viscosity, flash-point etc.). What in turn determines the properties 
of these liquids is the chemical composition of the liquid (including aromatic 
content, distillation range, paraffinic content, etc) [21–25].

Herein, the suitability of pyrolysis as a stand-alone chemical recycling 
technique for producing the precursors for virgin polyolefins is examined. 
Liquid products obtained from noncatalytic pyrolysis of polypropylene at 
two different temperatures were analyzed to obtain physical properties and 
chemical composition by several chromatography techniques, in comparison 
to two different naphtha mixtures, namely, light naphtha and heavy naphtha. 
Liquid samples were then distilled under vacuum and fractionated to examine 
if a portion of pyrolysis oil can be used as naphtha. Results demonstrate that, 
although there is a very small fraction of pyrolysis oil consisting of saturated 
alkanes and naphthenes, pyrolysis oil obtained from PP exhibits distinct 
compositional differences than naphtha and cannot be used as a substitute 
for it.

Materials and Methods

Pyrolysis oils were produced by thermal non-catalytic degradation pyrolysis 
of polypropylene in two different temperature ranges. The polypropylene used 
in this study are bigbag sacks. ‘Py oil-1’ represents the liquid product from the 
reactor at 270-300°C, and ‘Py oil-2’ represents the liquid product taken from 
the reactor at 370-400°C. The values of light and heavy naphtha samples were 
taken as the analysis results of the naphtha products used as inputs in the 
Ethylene and Aromatics plants of PETKİM, respectively.

Density measurements were performed according to American Society for 
Testing and Materials (ASTM) D4052 - Standard Test Method for Density, 
Relative Density, and the American Petroleum Institute (API) Gravity of Liquids 
by Digital Density Meter. Vacuum distillation results were determined with 
ASTM D1160 - Standard Test Method for Distillation of Petroleum Products 
at Reduced Pressure. Total sulfur amount of the samples was measured with 
ASTM D453 - Standard Test Method for Determination of Total Sulfur in Light 
Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil 
by Ultraviolet Fluorescence.

To understand the boiling point distribution and the amount of the naphtha 
fraction of the pyrolysis oils, simulated distillation (SIMDIST) analysis ASTM 
D7169 were performed and boiling points were determined according to ASTM 
D86 - Standard Test Method for Distillation of Petroleum Products and Liquid 
Fuels at Atmospheric Pressure. SIMDIST is a Gas Chromatography (GC) method 
applied to characterize and separate petroleum fractions and products based 
on their boiling point. The principle of SIMDIST is based on a combination of 
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traps for hydrocarbons with a similar functional group, separating columns 
and a hydrogenator for olefins. Atmospheric distillation is associated with the 
volumetric composition, energy content and boiling range distribution of fuels 
and petroleum products.

Alkane profile of the samples were also obtained to examine carbon number 
distribution. Bromine number values of the samples were calculated by applying 
the method from ASTM D1159-07 - Standard Test Method for Bromine Numbers 
of Petroleum Distillates and Commercial Aliphatic Olefins by Electrometric 
Titration and compared with light and heavy naphtha results.

To examine the chemical compositions, PIONA (acronym for n-paraffins, 
iso-paraffins, olefins, naphthenes and aromatics) analysis was performed 
on pyrolysis oils fractionated up to 210°C. This temperature was chosen 
to prevent column clogging in PIONA analysis. PIONA is a unique method 
used in the Refinery and Petrochemical industries. It is a multi-dimensional 
chromatography technology containing seven separation columns. For each 
mode, all settings are preprogrammed to enable automatic column switching 
and temperature control. The analyzer system is specified according to the 
following standard methods, Euopean Norm International Organization for 
Standardization (EN ISO) 22854 and ASTM D6839.

Results and Discussion

Two different pyrolysis oils, shown in Figure 1, were studied in comparison 
with light and heavy naphtha to examine suitability of using pyrolysis oil for 
producing plastics to close the gap in circularity of plastics. The first observed 
difference is the color of the samples. Py oil-1 is yellow, Py oil-2 is orange, light 
and heavy naphtha are colorless.

Figure 1. (a) Light naphtha, (b) Heavy naphtha, (c) Py oil-1; the oil collected between 
270-300°C, (d) Py oil-2; the oil collected between 370-400°C
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All four liquids, two different pyrolysis oils and naphtha mixtures have similar 
density values (Table 1) at 15 °C, as determined by ASTM D4052 method. 
Density of pyrolysis oils were closer to the typical value known for heavy 
naphtha. In addition to density, total sulfur amount is determined by ASTM 
D5453. The total sulfur content was determined to be higher in the Py oil-1 
sample collected at lower temperature compared to the naphtha samples, 
and within the desired specification values in the Py oil-2 sample collected 
at higher temperature. Yet, it should be noted that the purity of pyrolysis oil 
depends on the purity of the waste plastics. If waste plastic is contaminated 
with sulfur-containing compounds, pyrolysis mixtures will contain higher 
amount of sulfur.

The boiling point fractionation was determined with vacuum distillation by 
ASTM D1160 method and tabulated in Table 1. Vacuum distillation results 
of light naphtha and heavy naphtha are similar, albeit slightly lower initial 
boiling point (IBP) of light naphtha. Vacuum distillation results of pyrolysis 
oils, however, show major differences. IBP of pyrolysis oils are slightly higher 
than naphtha mixtures. The required temperature for 90% fractionation of 
both oils is around 380-385 °C, significantly higher than that of naphtha 
mixtures.

Table 1. Density, vacuum distillation and total sulfur results

Test Unit Light Naphtha
Heavy 

Naphtha
Py 

oil-1
Py 

oil-2
Method

Density, 15°C g/cm3 Min. 0.67, max. 0.72 ≥ 0,73 0.7917 0.7840 ASTM D4052

Total Sulfur wt. % Max. 0.060 Max. 0.10 0.3 0.006 ASTM D5453

IBP* °C ≥ 33 ≥ 50 60 55

ASTM D1160

5 % Fraction °C - - 97 97

10 % Fraction °C - Min. 85 115 115

20 % Fraction °C - - 145 140

30 % Fraction °C - Min. 105 155 165

40 % Fraction °C - - 195 210

50 % Fraction °C Min. 115 Min. 120 232 242

60 % Fraction °C - - 272 280

70 % Fraction °C - Min. 135 325 338

80 % Fraction °C - - 365 372

90 % Fraction °C Min. 170 Min. 170 380 385

* Initial boiling point.

Fractionation of pyrolysis oils and naphtha liquids was also performed with 
Simulated Distillation (SIMDIST) to determine the volumetric fraction of 
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pyrolysis oil that is similar to naphtha based on where the final boiling point 
(FBP) of light and heavy naphtha are located in distillation results of pyrolysis 
oils. This information is then used for determining the volumetric percentage. 
SIMDIST results in Table 2 show that light naphtha-like composition is 10-15% in 
Py oil-1 and 5-10% in Py-oil 2, whereas heavy naphtha-like composition is 30-
40% in both Py oil-1 and Py oil-2.

Table 2. SIMDIST analysis results

Mass
(%)

Boiling Point (°C)

Light Naphta Heavy Naphta Py oil-1 Py oil-2

5 36.4 96.0 61.7 66.4

10 40.8 101.5 110.1 123.5

15 - 107.6 132.5 133.2

20 46.0 113.1 133.9 134.3

30 50.7 117.9 136.0 158.9

40 55.6 125.0 190.2 227.6

50 60.6 128.7 234.5 246.9

60 66.6 134.7 275.2 303.4

70 72.2 140.5 320.0 339.7

80 79.1 146.5 374.3 382.4

85 - 150.3 407.2 405.4

90 89.9 151.8 436.2 430.4

95 100.2 157.9 474.0 464.0

96 - 159.1 485.2 472.2

97 - 160.7 495.8 483.6

98 - 163.2 508.9 497.2

99 - 167.1 527.5 517.7

FBP* 117.9 171.4 541.6 537.9

  * Final boiling point.

In Figure 2, alkane profile of the samples based on the carbon numbers were 
illustrated. C8 fraction had the highest value in pyrolysis oil samples. These 
values were determined as 28.7 % for Py oil-1 and 25.6 % for Py oil-2. The carbon 
number distribution of pyrolysis oils varied in the range of C5-C44.
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Figure 2. Alkane profile of the samples

The distillation studies and alkane distribution analysis point out that naphtha 
mixtures have significantly lower number of carbons than pyrolysis oils. This 
is a major difference between naphtha and pyrolysis oil that may limit using 
the latter as a substitute for the former. Existing pyrolysis technologies are, 
however, equipped with a condenser that helps with decreasing the carbon 
number to the desired range. For instance, the patent disclosed by BlueAlp 
Innovations B.V. technology for chemical recycling of plastics describes a use 
of partial condenser, which controls the composition of the pyrolyzed gas by 
the condenser temperature. In addition, pyrolysis oil can be distillated to obtain 
desired fraction for downstream operations [26].

The carbon range of pyrolysis oil could be brought to the similar range with 
naphtha. What remains as a huge challenge is the compositional differences. 
To examine the compositional differences, bromine number of each liquid 
was measured and given in Table 3. The number of grams of bromine that will 
react with 100 g of the specimen under the conditions of the test is defined as 
bromine number. The bromine number quantifies and indicates the aliphatic 
unsaturated fraction of the petroleum products. By using this method, 
estimation of the percentage of olefins in petroleum distillates boiling up to 
approximately 315°C can be obtained, albeit lower precision above the bromine 
number of 185 [27]. Py oil-2 has higher bromine number (304) than Py oil-1 
(85), and hence, higher olefinic content. Mangest et al. reported that straight 
chain olefins, branched chain olefins, cyclic olefins, and diolefins have bromine 
number between 63-235, 58-235, 134-237, and 185-352, respectively [28]. Based 
on these, it can be stated that Py oil-1 is likely to be composed of straight and 
branched chain olefins, while the majority of Py oil-2 contains diolefins. Note 
that bromine numbers for light and heavy naphtha are significantly smaller 
than pyrolysis oils, indicating the major compositional differences in terms of 
olefinic content.
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Table 3. Bromine number of the pyrolysis oils and naphtha samples

Sample Bromine Number (g/100 g)

Light Naphtha 1.2

Heavy Naphtha 0.3

Py oil-1 85

Py oil-2 304

Py oil-1-F210 88

Py oil-2-F210 216

Py oil-1 and Py oil-2 were distilled up to 210°C to obtain naphtha-like fractionations 
and their exact compositions using PIONA. Fractionated pyrolysis oil samples 
are more suitable samples for PIONA analysis than their unfractionated 
counterparts because PIONA analysis is limited to hydrocarbons that have 
boiling point lower than 200°C and carbon number around C11 [29]. The 
distillates were labelled as Py oil-1-F210 and Py oil-2-F210. Bromine numbers of 
the fraction of pyrolysis oils up to 210°C were given in Table 3. The distillation 
did not change the bromine number of Py oil-1, whereas decreased that Py 
oil-2 from 304 to 216. It should be noted that these numbers are still higher than 
bromine numbers of naphtha samples.

PIONA analysis results were given in Table 4. Saturated components (naphthenes, 
and paraffins) of light naphtha and heavy naphtha are approximately 98% 
and 91%, respectively, with remaining minor components being olefins and 
aromatics. The ratio of the saturated components in Py oil-1-F210 and Py-oil-
2-F210 are approximately 36% and 35%, respectively, significantly lower than 
that of naphtha blends. The majority of components in fractionated pyrolysis 
oils were found to be cyclic olefins (~44%). High concentration of olefinic 
substances is an attribute of pyrolysis oil obtained from PP, as reported in an 
earlier study by Kusenberg et al. [30]. High fraction of i-paraffins in pyrolysis oils 
is attributed to using PP as a feedstock for pyrolysis. If PE without significant 
branching was used as a feedstock, higher fraction of n-paraffins would be 
anticipated since PE is likely to decompose into linear hydrocarbons. Aromatics 
in pyrolysis oils formed during pyrolysis and their formation cannot be linked 
other polymer resins such as polystyrene in the feedstock since virgin PP is 
used for pyrolysis to produce oils [24,31–35].



88

Table 4. PIONA analysis summary

Component
Light Naphtha,

% (w/w)
Heavy Naphtha,

% (w/w)
Py oil-1-F210,

% (w/w)
Py oil-2-F210,

% (w/w)

Naphthenes 15.7 36.3 9.3 10.1

i-Paraffins 41.7 28.8 19.1 19.1

n-Paraffins 40.3 25.9 7.8 5.5

Cyclic Olefins - - 45.3 43.4

Olefins 0.1 0.3 15.0 16.8

Aromatics 2.2 8.8 3.5 5.2

When pyrolysis is applied to waste PP, it produced a complex mixture of 
hydrocarbons with low selectivity to desired products (saturated hydrocarbons) 
and high selectivity to highly-reactive olefins that may form deposits on the 
cracker walls and aromatics that are precursors for coke formation [35]. It is 
anticipated that operational issues would arise if these fractionated pyrolysis 
oils were to fed to the steam crackers directly without any upgrading. Thus, as 
a stand-alone technology, pyrolysis oil cannot replace and cannot be blended 
with naphtha, and not a viable option for closing the circularity of waste 
plastics.

Conclusions

This study focuses on comparing two different pyrolysis oils to light and heavy 
naphtha, and critically evaluates the suitability of using pyrolysis oil as a 
feedstock for producing polyolefins to close the gap in the circularity. Liquid 
samples obtained from noncatalytic pyrolysis of PP were analyzed by several 
standardized tests. Analyses were also performed for two different naphtha 
samples for comparison purposes. Results show that although some of the 
physical properties such as density, initial boiling point, and sulfur content 
of the pyrolysis oils and naphtha are similar, pyrolysis oils examined in this 
study exhibit two major differences than the naphtha samples: (i) Pyrolysis 
oils have a wider carbon distribution than naphtha. This difference however 
can be alleviated by integrating a condenser to the reactor or distilling 
the pyrolysis oil to obtain the desired carbon range. (ii) The majority of the 
pyrolysis oils is cyclic olefins, whereas the majority of naphtha samples are 
paraffinic hydrocarbons. If the studied pyrolysis oils are used as feedstock 
for steam crackers, excessive carbon formation may occur inside naphtha 
cracker and operational issues may arise because of reactive unsaturated 
hydrocarbons present in pyrolysis oil.
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The results demonstrate that the compositional differences prevent pyrolysis 
oil to be used as a substitute for naphtha and a feedstock for steam crackers. 
Even after distillation, less than 10% of pyrolysis oil of our study exhibited 
naphtha-like properties. This, however, does not mean that all pyrolysis oils 
fall under this conclusion. Pyrolysis oil properties are heavily dependent on 
system parameters, operating conditions, and catalyst attributes [24,36]. It is 
also possible to combine pyrolysis with other chemical technologies to upgrade 
the properties of pyrolysis oil. Therefore, the findings of our study should not 
be generalized as pyrolysis oil could never be used as a feedstock for steam 
crackers to close the gap in the circular economy. But if pyrolysis oil will be 
used as a feedstock for existing steam crackers and refinery infrastructure, 
it should exhibit naphtha-like properties. For making such an assessment, 
this study can serve as a benchmark for evaluating naphtha-like feedstock 
properties for steam crackers.
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Abstract
Para-toluic acid, a major pollutant in industrial wastewater, is hazardous to human health. It 
has been demonstrated that Gram-negative bacteria are among the most effective degraders 
of para-toluic acid. In this study, the ability of Comamonas testosteroni strain 3a2, isolated 
from a petrochemical industry wastewater, to degrade para-toluic acid was investigated. 
The effect of different carbon (glucose and ethylene glycol) and nitrogen sources (urea, yeast 
extract, peptone, NaNO3, NH4NO3) on the biodegradation of para-toluic acid by the isolate 3a2 
was evaluated. Furthermore, ring hydroxylating dioxygenase genes were amplified by PCR 
and their expression was evaluated during the biodegradation of para-toluic acid. The results 
indicated that strain 3a2 was able to degrade up to 1000 mg/L of para-toluic acid after 14 
h. The highest degradation yield was recorded in the presence of yeast extract as nitrogen 
source. However, the formation of terephthalic acid and phthalic acid was noted during 
para-toluic acid degradation by the isolate 3a2. Toluate 1,2-dioxygenase, terephthalate 1,2 
dioxygenase, and phthalate 4,5 dioxygenase genes were detected in the genomic DNA of 3a2. 
The induction of ring hydroxylating dioxygenase genes was proportional to the concentration 
of each hydrocarbon. This study showed that the isolate 3a2 can produce terephthalate and 
phthalate during the para-toluic acid biodegradation, which were also degraded after 24 h.
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Introduction

Para-Toluic acid (pTol), also known as 4-methylbenzoate, is widely generated 
during the production of purified terephthalic acid (PTA). The amount of pTol in 
wastewateris estimatedabout 30% of the total chemical oxygen demand (COD) 
produced after PTA production(Noyola et al.2000). Besides, pTol is used as a 
raw material for the production of anticorrosive additives, colourants, dyestuffs 
and paints(Maki and Takeda 2000). However,pTol is very harmful to humans 
due toitshazardous and toxic nature. It is recognized as hazardous waste by the 
United States Environmental Protection Agency (USEPA) and is categorized in 
the priority pollutant list(Shirota et al.2008). Taking into consideration the toxic 
and carcinogenic effects of pTol, it is necessary to establish environmentally 
friendly, cost-effective and efficient techniques to ensure the safe removal 
of pTol from polluted sites. Microbial degradation represents an important 
approach for eliminating hydrocarbons from contaminated ecosystems. In 
this context, bioremediation has been recognized as a recommended method 
for removing pTol.Previous studies showed that optimizing bacterial culture 
media can enhance the biodegradation process (Abd-El-Haleem et al. 2003). 
The presence of different carbon and nitrogen sources in culture media plays 
an important role during the biodegradation process (Varjani and Upasani 
2016, Varjani and Upasani2017; Zhao et al.2011).

Various bacterial strains belonging to Bacillus, Pseudomonas, Burkholderia, 
Acinetobacter, Comamonas, Mycobacterium, Rhodococcus genera have been 
reported as pTol degraders(Phale et al. 2007). These microorganisms degrade 
aromatic compounds aerobically through key multicomponent enzymes 
named ring hydroxylating dioxygenases (RHDs), which are also known 
as Rieske non-heme iron dioxygenases. RHDs consist of twoαn/βnsubunits 
and contain a Rieske-type Fe2S2 center.The active-site mononuclear iron 
is involved in the initial oxidation of the aromatic compounds(Vermaet al. 
2019). Toluate 1,2-dioxygenase (TADO) and benzoate dioxygenase (BADO) are 
toluate dioxygenases which catalyze the 1,2-dihydroxylation of different kind 
of benzoates. TADO transforms wider range of substituted benzoates when 
compared to BADO. The α/β subunits of TADO and BADO are encoded by xylXY 
and benAB genes respectively(Ge et al. 2002; Ge and Eltis 2003). However, 
Junkeret al.(1997) described another pathway that mediated the degradation 
of pTol by two Comamonas strains (PSB-4 and T-2). These strains degrade 
pTol to terephthalic acid (TPA)inthree-stepprocessusing a monooxygenase 
(TsaMB) and two dehydrogenase enzymes (TsaC and TsaD), which are encoded 
by tsaMBCD genes respectively (Junker et al. 1997).

In the present study, an efficient aromatic hydrocarbon-degrading Comamonas 
testosteroni strain 3a2,isolated from a petrochemical industry wastewater, was 
used for pTol degradation. The degradation pathways and the expression of ring 
hydroxylating dioxygenase genes were evaluated during the degradation process.
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Materials and Methods

Chemicals and Culture media

All bacterial culture media, p-Toluic acid (pTol), Bushnell Haas (BH) medium, 
sugar standard D-(+) glucose, ethylene glycol (EG), and acetonitrile were 
purchased from Merck Company (Germany). Ultrapure water was obtained 
using Sartorius 610 (Hampton, NH, U.S.A).

Isolation of bacterial strain

To use and publish legally the results, appropriate authorizations have been 
obtained from the responsible authorities of SOCAR company The 3a2 isolate 
used in this study was isolated from a petrochemical industry wastewater in 
SOCAR Co, Izmir, Türkiye (Project number: 112D044-TUBİTAK).The isolation of 
bacterial strain was carried out in a flask containing 50 mL Bushnell-Hass 
medium (BH) (g L-1: KH2PO4, 1.00; K2HPO4, 1.00; MgSO4, 0.2; CaCl2, 0.02; NH4NO3, 1.00; 
FeCl3, 0.05; yeast extract, 0.05) inoculated with 2.5 g sludge and supplemented 
with 50 mgL-1pTol as sole carbon source.The flask was incubated at 30°C at 
150 g for 7 days (Zhang et al. 2013). Then, 2.5 mL of the enriched culture were 
transferred to a new flaskcontaining fresh BH mediumsupplemented with 50 
mgL-1 pTol and incubated under the same conditions. To obtain the enriched 
pTol degrading bacteria,this process was repeated four times. At the end of 
incubation, 1mL from the flask was serially diluted using sterile 1x phosphate-
buffered saline (1x PBS, pH 7.4).TwentyµL from the 103dilution were transferred 
to BH agar supplemented with 50 mgL-1 pTol. The agar plates were incubated 
at 30°C for 3 days. The colonies were further cultured on Nutrient Agar (NA) 
(Merck, Germany) plates and incubated at 30°C for 2 days. Then, single colonies 
were transferred to sterile NA plates. The inoculated plates were incubated 
under the same conditions as mentioned above. The obtained pure colonies 
were then screened for their pTol degradation ability.

Screening of pTol biodegradation

Each isolate was individually inoculated into 5 mL nutrient broth (g L-1: beef 
extract, 1.0; peptone, 5.0; yeast extract, 2.0; NaCl, 5.0) and incubatedovernight 
in a shaking incubator (150 g) at 30ºC. One mL from each sample was 
centrifuged at 5000 g for 5 minutes and the supernatants were discarded. The 
pellets were washed twice with sterile 1x PBS, and the concentration of the 
bacterialcells in each samplewas fixed to 1.5 x 108CFU/mL using the DEN-1B 
McFarland Densitometer device (BioSan Densitometer GmbH, Germany). 
Thenflasks containing 50 mL BH medium supplemented with 50 mgL-1 pTol 
were inoculated with 2.5 mL from each standardized culture.The flasks were 
incubated in a rotary shaker (150 g) at 30°C for 24h. A flask that contained 
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un-inoculated sterile medium was employed as control. The pTol degradation 
yields were assessed every two hours for 24h.The isolate that demonstrated 
the highest pTol degradation was selected for further experiments. The isolate 
was maintained in Nutrient Broth containing 16 % glycerol and stored at -80°C.

All assays were conducted in triplicate. Unless otherwise indicated, all the 
experiments in the study were performed as mentioned above.

Molecular characterization of 3a2 isolate

The genomic DNA (gDNA)of the strain 3a2 was extracted using the Presto Mini 
gDNA Bacteria Kit (Geneaid, Taiwan) according to the manual’s instructions. 
The concentration and purity of the gDNA were assessed using Nanodrop 
2000c spectrophotometer (Thermo Scientific, USA). The universal primers 
listed in table 1 were employed to amplify the 16S rDNA by PCRusing the Q5 
High-Fidelity DNA Polymerase (BioLabs, USA).The PCR amplification was 
carried out using a TechnePlus Thermal cyclerand the amplification stages 
were as follow: Initial denaturation stage: 1 cycle of 95ºC for 120 s;amplification 
stage (30 cycles): 95ºC for 20 s, 56ºC for 40 s, and 72ºC for 90 s; final extension 
stage: 72ºC for 5 min.The PCR productswere visualized on 1% agarose gel 
using Bioimaging Systems (UVP Biospectrum, UK). The 1481 bp PCR fragments 
were purified using Expin Combo GP kit (GeneAll, Portugal) andsequenced by 
MedSanTek Lab Company. The obtained nucleic acid sequences were edited 
using DNA Baser Assembler software and analyzedusingthe BLAST/NCBI 
platform.The 16S rDNA sequenceswere aligned with reference sequences using 
MEGA 7 software.
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Table 1. List of primers used for polymerase chain reaction

Primer target Primer names Nucleotide sequences Product 
size (bp)

16S rRNA 11F a (Zhang et al. 2015)
1492R

GTTTGATCCTGGCTCAG 
GGYTACCTTGTTACGACTT

1480

F341b (De Mandal et al.2015)
R518

CCTACGGGAGGCAGCAG 
ATTACCGCGGCTGCTGG

184

TADO ToLDFa

ToLDR
AACGACTATTACACCACGCAGA 
CATGCCGCTGACATTGAAGAAG

900

qpTolFb                                                                                                            
qpTolR

GAGAGAAGCGGGCGATGATA 
CCTCACTGGCTAAGCGATCT

165

TPADO TPaDFa

TPaDR
TAYCACGCCTGGAGCTACAA 
GTTCTGRATCTGCTGCAGCAC

500

qTpaDFb

qTpaDR
AGCTGAATCGCCTCTCACAAA 
CGAACTCCTCAAAGCCCTCTA

183

PDO ophA2Fa

ophA2R
AAGAAAACGAATTGCTGTGC
ACGTTGTACAGGTTGTTCGG

750

qophA2Fb

ophA2R
AGCCTGCACTCGTCGGACTT
ACGTTGTACAGGTTGTTCGG

242

BADO BnDOFa

BnDOR
TACCTGGCMCAYGARAGCCA  
AAGAAATCYTCRTACTGGCG

900

ANTDO AntDOFa

AntDOR
TGGATCTACGCCTGCCACGAAA
GTGGCCACGTAGTTGTAGTG

541

TsaM TsaMF
TsaMR

CTGTACCACGGCCTGAAGTT
TAGATCTTCTCGGTGAGGGC

665

TsaD TsaDF
TsaDR

AACTTTCCCCTGGTGCTCTC
CTCTTCGCTCATCACTGGC

678

aUsed for PCR
b Used for qPCR

pTol degradation assays

The degradation efficiency of pTol by isolate 3a2 was evaluated in the presence 
of different pTol concentrations as well in different carbon and nitrogen sources.
The pTol degradation yields were assessed every two hours for 24 hours. The 
capability of strain 3a2 to degrade high pTol concentrations was investigated 
in 50 mL BH medium supplemented with 50, 100, 250, 500 and 1000 mgL-1 pTol.
The effect of (different) nitrogen sources on the biodegradation of pTol by 
3a2 isolate was evaluated in 50 mL BH medium supplemented with 0.05% of 
either organic (yeast extract, peptone and urea) or inorganic (sodium nitrate, 
ammonium nitrate) nitrogen sources.

The influenceof different carbon sources on the pTol degradation process was 
investigated by adding 50, 100, 500, 1000, and 2000 mgL-1 of glucose or EG into 
50 mL BH in presence of 500 mgL-1pTol.
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High-Performance Liquid Chromatography (HPLC) analysis

The degradation of pTol, TPA and PAwasanalyzedusing high-performance 
liquid chromatography (HPLC, Agilent 1100 Series, USA) equipped with a DAD 
detector. HPLC analyses were carried out according toPillai et al.2009 with 
minor modifications; the mobile phase consisted of amixture of water (A) and 
acetonitrile/0.1% Formic acid (B) (A=70% - B= 30%) with a flow rate of 1 mL/min. 
AnAgilent Zorbax Eclipse PAH Column was used as astationary phase and 
the column temperature was 25°C. The volume of samples injected was1 μL. 
The detection of pTol, TPA and PAwas monitored at 240, 254 and 233 nmwith 
retention time equivalent to 6.2, 1.65 and 1.53 min respectively.

An HPLC equipped with a RID detector (Agilent Technologies, 1200 series, 
Santa Clara, CA, USA)was used to determine the capability of the isolate to 
use glucose and ethylene glycol (EG) as carbon sources. The separation was 
achieved on the Hi-Plex H column (7.7x300 mm, 8 μm) (Agilent Technologies, 
Santa Clara, CA, USA) under the isocratic condition with 0.0005 M H2SO4 as 
mobile phase. The flow rate was optimized and fixed at 0.600 mL/min for analysis 
of glucose and ethylene glycol. The column temperature was maintained at 
45°C Throughout the analysis process. Detector temperature was isothermal 
at 45°C. The volume of injected sample was equivalent to 100 μL.

Identification of Aromatic Ring-Hydroxylating Dioxygenase Genes

The presence of seven aromatic ring-hydroxylating dioxygenase genes namely 
toluate 1,2 dioxygenase (TADO), benzoate 1,2-dioxygenase (BADO), phthalate 
4,5 dioxygenase (PDO), terephthalate 1,2 dioxygenase (TPADO), anthranilate 
1,2-dioxygenase (ANTDO), p-toluene sulfonate monooxygenase (TsaM) and 
4-CBA dehydrogenase (TsaD) in the gDNA of the isolate 3a2 were investigated. 
The specific primers that were employed to amplify the genes of interest are 
mentioned in Table 1. The PCR amplification was carried out in the same run 
for all genes as follows: initial denaturation stage 3 min at 95°C; amplification 
stage (35 cycles) 30 s. at 95°C, 30 s. at 52°C and 1 min at 72°C; final extension 
stage 5 min at 72°C. The PCR products were visualized on 1.5 % agarose gel 
using a multispectral imaging system (BioSpectrum, UK). The expected PCR 
fragments were purified using the Expin Combo GP kit (GeneAll, Portugal) 
and sequenced using an automated sequencer ABI Prism Genetic Analyzer 
(Applied Biosystems, USA). The nucleotide sequences were edited with DNA 
Baser Sequence Assembler software and analysed using the NCBI Blastn and 
Blastx search tools. Phylogenetic trees were performed with MEGA7 software 
using reference amino acid sequences downloaded from GenBank and UniProt 
databases.
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Total RNA isolation

Total RNA isolation was proceeded attime zero, as well as after incubation 
for 24,6,8 and 10h using the Presto Mini RNA Bacteria Kit (Geneaid, Taiwan) 
according to manual’s instructions. Before RNA isolation, aliquots from 
the flasks werecentrifuged at 5000 g for 5 minutes (4 °C). The cell pellets 
were suspended in 1x PBS and the concentration of the cells was fixed to 
0.5 MacFarland using DEN-1B McFarland Densitometer device (BioSan 
Densitometer GmbH, Germany).  Then, 1 mL aliquot from each standardized 
suspension wascentrifuged at 5000 g for 5 minutes (4 °C), and total RNA was 
isolated from the cell pellet. The concentration and purity of nucleic acid were 
determined using NanoDrop™ 2000c Spectrophotometer (Thermo Scientific, 
USA).

Reverse Transcription (RT) - qPCR analysis

The expression levels of the aromatic ring-hydroxylating dioxygenase genes 
were evaluated during the degradation of pTol by the selected isolate.  
Total RNAs were transcribed into cDNA using High Capacity cDNA Reverse 
Transcription Kit (AppliedBiosystems, USA) according to manual’s instructions. 
The reverse transcription was carried out in a T100 thermal cycler (Bio-Rad, 
USA) as follows: 10 min at 25°C; 120 min at 37°C and 5 min at 85°C.  The cDNAs 
were stored at -20°C. Real-time PCR experiments were performed in a Roche 
LightCycler® 96 Real-time PCR System (Roche Diagnostics GmbH, Germany) 
using LightCycler FastStart Master SYBR Green I Kit (Roche GmbH, Germany).
Reaction conditions were set as recommended by the manufacturer. All genes 
were amplified in the same run. The real-time PCR amplification was carried 
out as follows: Initial denaturation stage 95°C for 10 min; Amplification stage 
(45 cycles): 95°C for 30 s., 51°C for 10 s. and 72°C for 10 s.; Melting stage from 65°C 
to 95°C at 0.2°C/s melt rates and cooling stage 40°C for 10 s. Gene expression 
analyses were performed using the comparative critical threshold, 2-ΔΔCT Method 
(relative quantification) (Livak and Schmittgen 2001). The ribosomal gene 16S 
rRNAwas employed as a reference gene for normalizing gene expression data.

Statistical analysis

Statistical analysis was proceeded using SPSS Statistics V.25.0 (IBM SPSS 
Statistics, USA). Shapiro-Wilk test was used for normality of quantitative 
data analysis. Repeated measures ANOVA method was used to compare the 
time-dependent variation of pTol biodegradation yields and growth of 3a2 
in the presence of different carbon and nitrogen sources. Time- dependent 
pTol degradation change was compared using Tukey HSD analysis with 
yeast extract as a reference nitrogen source.Bonferroni correction for the 
number of correlations was examined.One-way ANOVA method was used for 
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comparisons between groups. Tukey HSD method was used mostly for binary 
comparisons. p-value <0.05 was considered to be significant.All experiments 
were performed in triplicate and the results were expressed as an average of 
three independent trials ± standard deviation.

Results

Identification of the strain 3a2

Phylogenetic analysis of isolate 3a2 (accession number: MT127003) 
indicated high 16S rDNA nucleic acid sequence similarity with Comamonas 
testosteronistrains.

Biodegradation of pTol

Strain 3a2 demonstrated high ability to use up to 1000 mgL-1 pTol as a carbon 
source (Fig. 1).

High concentrations of hydrocarbons can be toxic for microorganisms.
Aromatic hydrocarbons accumulate in the lipid bilayer membrane of the 
cells which cause theirdisruption (Kusumawardhani et al.2018; Heipieper 
and Martinez 2010). The toxic effects of hydrocarbons on microorganisms 
have important consequences on the biodegradation process. Therefore, the 
addition of microorganisms capable of degrading high concentrations of toxic 
pollutants might accelerate their removal. In this study, the strain 3a2 was able 
to degrade up to 1000 mgL-1 pTol. The formation of PA and TPA as a result of 
pTol degradation was detected. The occurrence of PA and TPA startedafter 4h 
and their concentrations increased to reach a maximum equivalent to 93 ± 9 
mgL-1 and 107 ± 3 mgL-1respectively after 8h. While all the 500 mgL-1pTol were 
consumed after 10h, TPA and PA were completely degraded after 12h and 24h 
respectively (Fig. 2).
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Figure 1. Degradation of different concentrations of pTol

Figure 2. Formation of PA and TPA during pTol degradation (a) and HPLC image of 
degradation process (b)
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Effect of nitrogen sources on the biodegradation of pTol

The highest degradation yield was recorded in the presence of yeast 
extract as 500mgL-1 pTol was completely removed after 10h (Fig.3a). The 
degradation yields in the presence of peptone and urea were 77 ± 0.47% and 
40 ± 2.08%, respectively,after 12h. On the other hand, the lowest degradation 
yields ofpTol were obtained in the presence of inorganic nitrogen sources 
with yieldsequivalent to37± 3.7% and 43 ± 4.5% for sodium nitrate and 
ammonium nitrate respectively after 12h.The time-dependent variation of pTol 
concentration in the presence of different nitrogen sources was investigated 
with repeated measures ANOVA method. The decrease in pTol concentration 
with time in presence of different nitrogen sources was not similar (time-
nitrogen interaction p<0.05). In addition, the pTol biodegradation within each 
nitrogen source overtime was evaluated. The variation of pTol concentration 
in each nitrogen source overtime were found statistically different (p<0.001 for 
each nitrogen source).

Variation of pTol concentration with time change was compared with Post-
hoc test and Tukey HSD analysis.Taking into consideration that yeast 
extract was considered as a standard, the degradation of pTol in presence 
of different nitrogen sources was significantly affectedafterthe 4th h (p <0.05) 
(Supplementary Table 1).The growth of Comamonas testosteronistrain 3a2 in the 
presence of different nitrogen sources was also examined. The highest growth 
of 3a2 was recorded in the presence of yeast extract and peptone (Fig.3b).The 
effect of different nitrogen sources on bacterial growth was significant. The 
highest difference in growth was noted after 4h (p<0.05).The results revealed 
that the adaptation of strain 3a2 to the high toxic concentrations of pTol 
required 4h.



102

Figure 3. pTol degradation (a) and bacterial growth (b) with nitrogen sources

Biodegradation of pTol in the presence of glucose and ethylene glycol

Previous studies have investigated the impact of various carbon sources on 
hydrocarbon degradation by different microorganisms(Guo et al.2014; Xie et 
al.2013). This study investigated the effect of glucose on the degradation of 
pTol byisolate 3a2. As shown in Fig. 4a, glucose had no significant effecton 
the degradation yield.pTol was completely degraded in the presence of 
different concentrations of glucose (50 mgL-1, 100 mgL-1, 500 mgL-1, 1000 
mgL-1, 2000 mgL-1) after 12h (Supplementary Table 2). The variation of pTol 
concentration with time, in the presence of differentconcentrations of glucose, 
was investigatedusing repeated measures ANOVA method. Nosignificant 
difference was noted within the first 4h (p> 0.05). The concentration of pTol in 
the presence of different concentrations of glucose was compared to that in 
control sample (without glucose) using the Tukey HSD method. The difference 
in pTol concentration was significant only in the presence of 1000 mgL-1 and 
2000mgL-1 glucose after 8h (Supplementary Table 3).Therefore, the presence 
of glucose as carbon source did not influence the pTol degradation by the 
isolate 3a2.



103

Ethylene glycol (EG) is a toxic compound that is widely used with TPA for PET 
production. It is extracted from natural gases and can be found in high quantity 
in petroleum industrial plant.In our study, the effect of different concentrations 
of EG on the biodegradation of pTol by strain 3a2 was investigated. According 
toFig. 4b,no inhibitory effect was noted in the presence ofEG at low 
concentrations (50 and 100 mgL-1). On the other hand, it was noted that high 
concentrations of EG (500, 1000, 2000 mgL-1) inhibited the biodegradation 
ability of strain 3a2. The ability of 3a2 to degrade EG as a sole carbon source 
was also evaluated using HPLC. Although bacterial growth was noted only in 
the flasks which contained 50 and 100 mgL-1 EG, the isolate 3a2 was not able to 
degradeEG. Several studiesreported the toxic effects of EG on microorganisms 
(Fowles et al.2017; Snellings et al.2013). However, (Chidambara et al.1997) 
indicated that low concentrationsof EG (13 mgL-1) can beeasily metabolized by 
a bacterial consortium.

Figure 4. Degradation of pTol in the presence of glucose (a) and EG (b)
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Identification and expression of aromatic ring-hydroxylating dioxygenase genes

In this study, PCR amplification allowed the detection of TADO, PDO and 
TPADO genes in the gDNA of isolate 3a2, but BADO, ANTDO, TsaM and TsaD 
geneswere not amplified. The obtained amino acid sequences were compared 
to reference sequences using the NCBI BLASTP search tool. Phylogenetic trees 
were constructed with the sequences downloaded from GenBank and UniProt. 
The amino acid sequence of TADO, PDO and TPADO genes demonstrated high 
similarity with the aromatic ring-hydroxylating dioxygenase (RHD) genes of 
Comamonas and Pseudomonas strains (Fig. 5).

Figure 5. Dendrogram of 3a2 with the aromatic ring-hydroxylating dioxygenase genes. (a) 
phthalate 4,5 dioxygenase, (b) terephthalate 1,2 dioxygenase, (c) toluate 1,2-dioxygenase
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In this study, total RNA was extracted from strain 3a2 during the degradation 
of pTol at the 2nd, 4th, 6th, 8th and 10th h (Fig.6). The transcript levels of the TADO, 
PDO and TPADOgenes were detected by real-time PCR. The induction of TADO 
gene started at the beginning of incubation to reach the highest expression 
at the 6th h (40±3.2 fold). Ge et al.(2002) reported thatthe TADO enzyme can 
catalyze the degradation of wide range of substituted benzoates in the 
following order of specificity: 3-methylbenzoate > benzoate ≥ 3-chlorobenzoate > 
4-methylbenzoate ≥ 4-chlorobenzoate >> 2-methylbenzoate ≥ 2-chlorobenzoate.
The induction of TPADO and PDO genes started at the 4thand 6thhour with 
induction level equivalent to 18 ± 0.1 and 18.5 ± 0.4 fold respectively.

Figure 6. Expression of RHDs

Discusssion

The degradation of aromatic hydrocarbons by Comamonas testosteroni 
strains has been documented (Chen et al.2016; Zhao et al. 2015). Tobajas 
et al. (2012) reported that C. testosteroni can efficiently degrade phenolic 
compounds. Another study proceeded by Boon et al. (2000) revealed that a 
C. testosteroni isolated from activated sludge was able to use 3-chloroaniline 
(3-CA) as a carbon source.These  results  were  similar  to   this study,  which  
reported  that  a new strain 3a2 Comamonas testosterone degrade of pTOL.

PTA is produced by oxidation of p-xylene using the AMOCO process and which 
results in the production of pTol as an intermediate product (Tomas et al.2013). 
Also, the ability of bacterial species to convert aerobically pTol to TPA has been 
reported in previous studies (Junker et al.1997; Locheret al.1991). Luo and Lee 
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2017 have reported the production of TPA from p-xylene using an engineered 
Escherichia coli system. p-xylene is first converted to pTol (upstream pathway) 
and thento TPA (downstream pathway)(Luo and Lee 2017).In this study, the 
formation of phthalic acid (PA) and terephthalic acid during pTol degradation 
by the isolate 3a2.

Tobajas et al. (2012) reported that glucose does not affect degradation 
of hydrocarbon. Gao and Skeen (1999)reported that the addition of a 
carbon source, such as glucose, can induce degradation of chemicals by 
microorganisms. Another study demonstrated that the biodegradation of 
1H-1,2,4-triazole by Shinella sp. NJUST26 was enhanced by the addition of low 
concentration of glucose, sucrose or yeast extract (Wu et al. 2016). Jiang et 
al. (2019) reported a positive correlation between the growth rate of Bacillus 
cereus strain WD-2 and the biodegradation rate of prochloraz-manganese 
in the presence of different carbon sources.The effect of different carbon 
sources on the growth rate and biodegradation rate can be summarized as 
follows glucose> sucrose> maltose> starch. However, Abdelhafid et al. (2000) 
demonstrated that the presence of different carbon sources in the same flask 
might inhibit the biodegradation process.In this study, presence of glucose as 
carbon source did not influence the pTol degradation by the isolate 3a2.

Bacterial cells are challenged by the availability of nutrients during the 
biodegradation of hydrocarbons (Obinna et al. 2015). In this study, the effect 
of organic and inorganic nitrogen sources on pTol degradation by strain 3a2 
was evaluated. The results indicated that the biodegradation yield of pTol was 
higher in the presence of organic nitrogen sources when compared to that 
recorded in presence of inorganic nitrogen.The effect of organic or inorganic 
nitrogen sources on the biodegradation of hydrocarbons by microorganisms 
has been previously studied (Armenante et al. 1995; Abdelhafid et al. 2000; 
Obinna et al. 2015). Bereka 2013, investigated the effect of different nitrogen 
sources such as peptone, yeast extract, (NH4)2SO4, NH4Cl2 and NaNO3 on crude 
oil biodegradation. The study mentioned that peptone was the optimal nitrogen 
source as it caused the removal of 73.3 % of crude oil (Bereka 2013). In another 
study, He et al. (2019) reported that urea is unsuitable for biodegradation of 
n-hexane by Pseudomonas sp. strain NEE2. However, the authors indicated 
that there was no significant difference of n-hexane removal efficiency in 
the presence of (NH4)2SO4, yeast extract and peptone between 0 to 33h of 
incubation. Yet long extended incubation periods beyond 33h, the degradation 
of n-hexane in the presence of (NH4)2SO4 was significantly higher than that of 
organic nitrogen sources (yeast extract and peptone).

Several reviews have covered different enzymes andpathways that 
are responsible for degradation of aromatic hydrocarbons by various 
microorganisms.These includeBenzoate-1,2-dioxygenase from Alcaligenes 
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eutrophus B9, toluate-1,2-dioxygenase from Pseudomonas putida mt-
2, naphthalene 1,2-dioxygenase from Pseudomonas sp. strain NCIB 9816, 
anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1 (Eby et 
al. 2001; Gao et al. 2010; Joshi and Walia 1996; Vermaet al.2019; Reineke and 
Knackmuss 1978).  Many studies reported the implication of RHD genes in the 
degradation of aromatic hydrocarbons(He et al. 2018; Parales and Resnick 2006; 
Phale et al.2007; Zhao et al. 2015). Schlafli et al.(1994)reported the ability of C. 
testosteroni T-2 to degrade terephthalate to 1,2-dihydroxy-3,5-cyclohexadiene 
1,4-dicarboxylic acid through TPADO enzymes.

TsaMBCD is a metabolic pathway that degrades pTol which eventually results in 
the formation of TPA. This pathway comprises three stages that are catalyzed 
by the enzymes TsaMB, TsaC and TsaD during which 4-carboxybenzyl alcohol, 
4-carboxybenzaldehyde, and terephthalic acid are respectively formed. 
TsaMBCDenzymes are encoded by TsaMB, TsaC and TsaD genes respectively 
in C. testosteroni T-2 (Junker et al. 1997; Luo and Lee 2017; Tralau et al.2001). 
Aromatic ring hydroxylating dioxygenase genes are known to catalyze the first 
step in the biodegradation process of diverse aromatic compounds (Parales 
and Resnick 2006). Real-time PCR has been used to determine the expression 
of functional genes of hydrocarbon-degrading bacteria (Beller et al. 2002; Silva 
and Alvarez 2007). Similarly, Lillis et al. (2010) employed real-time PCR method 
to assess the abundance and expression of two catechol dioxygenase genes 
in soil contaminated with 2,4-dichlorophenol over a 21 day biodegradation 
period (Lillis et al. 2010)

In this study,TPA was produced during the biodegradation of pTol by 3a2 even 
thoughTsaM and TsaD genes were not detected. Besides, the formation of PA 
during pTol degradation by 3a2 might have been caused by another pathway. 
Another study reported the ability of TADO produced by Pseudomonas putida 
mt-2 to catalyzethe dihydroxylation of benzoates (Nakazawa and Yokota 1973). 
The TADO enzyme is encoded by the xylXYZ genes. These genes are part of the 
xyl operon which is located on the plasmid pWW0 of Pseudomonas putida. The 
pWW0 plasmid is involved in the biodegradationof xylenes and substituted 
toluenes (Harayama and Rekik 1990; Kasai et al. 2001).

This study demonstrated the ability of strain 3a2 to degrade pTol at high 
concentrations upto 1000mgL-1after 10h. The biodegradation of pTol was 
enhanced in the presence of organic nitrogen compared to the presence of 
their inorganic counterparts. The isolate was also able to degrade phthalate 
and terephthalate which resulted from pTol degradation within 24h.Three 
aromatic ring-hydroxylating dioxygenase genesnamely TADO, TPADO and 
PDO, which are responsible for the degradation of pTol, TPA and PA respectively, 
were detected in gDNA of Comamonas testosteronistrain 3a2. The high 
induction of TADO, TPADO and PDO genes indicates the efficient degradation 
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of hydrocarbons byisolate3a2.According to our knowledge, this is the first 
study that reports the ability of isolate 3a2 to convert pTol to PA.However, more 
investigations are required to elucidate the different pathways employed by 
the strain 3a2 to produce phthalate and terephthalate from pTol.
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